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1.- Introduction and Motivation 

Previous works show the existence of an outward particle flux when Electron Cyclotron 

Resonance Heating (ECRH) is applied to plasmas confined in stellarators [1]. This flux is 

manifested experimentally through hollow density profiles that are usually accompanied by 

peaked temperature ones [2]. The resulting confinement regime is characterised by having a 

positive intense radial electric field and an improved electron heat confinement and is called 

CERC (Core Electron Root Confinement) by the Stellarator Profile Data Base collaboration 

group [3]. This extra flux, called pump-out, can be explained in terms of the increasing of 

particles that enter the loss cone in momentum space due to the enhancement of their 

perpendicular momentum. Those particles are lost in a short time scale giving an 

enhancement of outward flux, which causes an increase of the positive electric field. In this 

work, a simplified procedure to estimate the outward flux, including collisions and diffusion 

in momentum space, is presented and the dynamics of the electric field is estimated. 

2.- The Langevin Equations 

ECRH can be understood as particle diffusion in momentum space along the vector 
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Therefore, the fraction of particles than enter the loss cone is increased, resulting in an 

enhancement of outward radial flux. The ambipolar condition implies the onset of a radial 

positive electric field that is able to stop the electron flux and to reduce the heat flux, 

appearing a peaked temperature profile. The exact estimation of this flux implies the 

resolution of the 5D kinetic equation (2D in momentum space and 3D in real space) [4]. The 

problem admits an alternative approach based on Langevin equations, which give the 

microscopic dynamics of particles in phase space [5]. The trajectories in momentum space of 

particles embedded in a wave field are given by
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with a deterministic part given by 1/2di
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expressions, the sum must be taken for repeated indexes that can take the values: i,k = !, // . 
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Figure 2

The coefficient Dcy comes from the quasi linear diffusion in momentum space and is 

proportional to the spectral density !(N||), and to the wave power density w: 

  

Dcy !  
u ( ) = dN//

w

u// !
ê ∀ !  

# 
2
∃ N// % N//R( ))& ∋(N//) =

w

u// !
ê ∀ !  

# 
2
∋(N//R ) 

Here, N // R = ! ∀ Y s( ) /u// is the resonant refractive index, ! = (
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) 1 / 2  is the Lorentz 

relativistic factor, ê is a unit vector proportional to the electric field, and 
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3.- Transport estimates: Linear approximation. 

The outward particle flux due to the pushing of electrons into loss cone is related to the 

flux in momentum space through the expression: 
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! is the border of loss cone in momentum space and f is the electron distribution function. 

Here we assume that all the electrons that enter into loss cone are lost immediately. In the 

former expression, it is necessary to know the distribution function and the structure of loss 

cone, which is equivalent to having solved the problem. Nevertheless, we can introduce some 

approximations in order to do a quick calculation that allows us to extract the main properties 

of the ECRH-induced particle flux. First, we assume that the electron distribution function is 

Maxwellian, i.e., the deformation of the distribution function is small (we perform a 

linearization of the problem); second, we assume that all the particles that enter the loss cone 

escape from the magnetic surface; and third, the structure of the loss cone is given by a cone 

and does not change. Of course, the distribution function will 

be modified by the wave-particle interaction and by the 

escaping electrons, and the structure of loss cone is modified 

by the electric field. All these approximations mean that we 

are overestimating the flux. 

 

Figure 1 shows the structure of the flux in 

momentum space versus the parallel momentum for 

several radial positions. Assuming a temperature, 

density, and magnetic field profiles, the absorbed power 

density can be estimated in the weakly relativistic 

approximation and, considering also a ripple profile, the 

total flux is calculated: ! E C H =1 r r ' d r ' ∀!( ) E C H# . 
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Figure 2 shows the divergence of the flux that gives the local contribution to the integrated 

flux, which is also plotted. The most important contribution to the total outward flux comes 

from the plasma core, where the absorbed power is maximum. The ambipolar condition will 

imply that a radial positive electric field must be created to keep the plasma quasi-neutrality.  

4.- The electric field dynamics. 

We propose a simple set of first order differential equations describing the behaviour 

of the radial electric field at short time scales. Our simplifications are based on the conditions 

prevailing in the heating power deposition zone of typical TJ-II ECH discharges: (i) the ion 

flux remains roughly unperturbed, (ii) the density profile is almost flat or has a negligible 

gradient scale length in comparison with the electron temperature one; and (iii) the slowing 

down time for electron-ion collisions (taking 1 keV electrons in a background of 0.1 keV 

ions) is large (~10
-4

 s) in comparison with the typical time-scales for the evolution of Er. From 

these conditions, the equilibrium radial force balance imposes ExB rotation for the ion species 

and null rotation speed for the electrons, which can only be attained with the electrons being 

affected by a diamagnetic rotation exactly opposed to the electric field drift. For the 

conditions described above, this implies a radial electric field E r ! ∀ # T e / e  as found in the 

experiments [6]. These constraints are equivalent to consider that the ions are frozen, so that 

the dynamics at the time scales of interest is governed by the changes in the radial electron 

flux, !r. In addition, we assume that E! = E∀ = 0 , !∀ = 0  and B
r , B! < < B∀ . The evolution of 

the field and the fluxes are given by the following equation: !
t
X = MX + Z . Where: 

 

The equilibrium solution is E r = ! p ' / e n , ∀ r = ∀ # = 0 , and the time evolution is given by 

X(t) = eMtX ( 0 ) + e
M ( t ! t ' )

Z(t ' )dt '0 t∀
. The variations of Z(t) will correspond to transport time 

scales, much slower than those of interest in transient regimes of ECH driven phenomena. 

Accounting for such slow variations cannot be done without (at least) one transport equation 

with Er-dependent transport coefficients. We leave this for a future work and concentrate on 

the dynamics of Er itself. The characteristic times of our problem are given by the eigenvalues 

X = E r

!r
!∀

#

∃

%
%%

&

∋

(
(( , M = 0

)
e

∗ 0 0
)
en

m
)+ r ,c0
),c )+∀

#

∃

%
%
%
%
%
%

&

∋

(
(
(
(
(
(

, Z = 0
)p

'
/m0#

∃

%
%%

&

∋

(
((

34th EPS 2007; F.Castejón et al. : Dynamics of positive radial electric field created by ECRH-pump out. 3 of 4



of M, whose characteristic equation is: P ( ! ) = ! 3 + ( ∀ r + ∀ # ) ! 2 + ( ∀ r ∀ # + ∃ U H R2 ) ! + ∀ # ∃ p 2 = 0 . 

Where !
UHR

 is the Upper Hybrid Resonance frequency. Firstly, let us check that the former 

systems of equations is stable, i.e., the solutions of the set of homogeneous linear equations, 

with Z=0, vanishes when t !∀ . Equivalently, we must show that if ∀ is a root of P(∀), then 

Re(∀) <0. According to Strelitz theorem this is satisfied if all the coefficients of the 

polynomial are positive as well as the product of first and second power coeffcients. So that 

Re( !
i
) < 0 ∀ # ∃ % 0 , which means that the poloidal viscosity is the key ingredient that 

governs the electric field dynamics. P(∀) is a real cubic polynomial, hence it has at least a real 

root, which we denote by ∀1. It is also hold that ! r , ! ∀ < < # U H R , then !
1
∀ #∃

%
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. It turns out that they are 

complex, giving rise to fast oscillations. We get rid of these extremely fast, unobservable 

oscillations by averaging the solution X(t) over a few periods: E r
!

r
!∀

# 

∃ 

% 
% % 

& 

∋ 

( 
( ( 
(t) = e )1 t

E r
!

r
!∀

# 

∃ 

% 
% % 

& 

∋ 

( 
( ( 
(

0 ) + e )1 ( t∗ t ' )

∗ p 'e n00# 

∃ 

% 
% 
% 
% 

& 

∋ 

( 
( 
( 
( 

dt'0 t+  

We therefore expect the observable time-scales of Er and !∀  to be the same and essentially 

governed by the poloidal viscosity. Within our hypotheses, any initial condition !r ∀ 0   must 

decay to the equilibrium solution following the exponent given by ∀1.  Therefore, if we start 

from an equilibrium field that satisfies !
e = !

i
, the final field will be the equilibrium one plus 

the extra field due to the increase in electron pressure gradient due to the reduction of heat 

transport, provided that the perturbation of ion flux is negligible. Obviously, our variable 

radial flux must be interpreted in this context as !
r = !ECH . The time scale of the modification 

of electrostatic potential in TJ-II is about 50 µs, which gives a value for the poloidal time 

decay ! ∀ # 8 0 ∃ 1 0 3 s% 1
. The equilibrium value of the electrostatic potential after a gyrotron 

has been switched on will be given by the value of the electron temperature and the enhanced 

flux is zero once the steady state has been reached. 
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