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 The rotational stabilization of the resistive wall modes (RWM) is analyzed within the 

single mode cylindrical Fitzpatrick–Aydemir model [1, 2] and the Boozer model [3, 4]. These 

models are based on different sets of equations and use different physical variables. To make 

possible a comparison of the predictions either expressed in different languages or implicitly 

contained in the models we accept here the approach described in [5], introduce common 

notation and derive the necessary consequences in terms of the measurable values, the mode 

growth rate 0γ  and the mode rotation frequency . 0Ω

 In both cases the dispersion relation is derived by matching the inner and outer solutions 

for the magnetic perturbation b . In the outer region the solution can be found, with a desired 

accuracy, using standard electromagnetic methods. The reliability of the final result will then 

depend on the boundary conditions at the plasma surface, which are different in [1, 2] and [3, 4]. 

The main issue addressed here is the stability of rotating modes versus the locked modes. 
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which gives us the mΓ  through  at the plasma boundary . Here , 

 is the part of  due to the currents in the plasma, and . In more detail the model is 

described in [5, 6]. 
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 From (1) it follows that, when , const=ext
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where 0γ  is the growth/decay rate of the mode, and  is the angular frequency of its toroidal 

rotation. Equating this to 

0Ω

mΓ  from (2) yields the dispersion relation in terms of  m

out

m bb / .
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 The Boozer theory assumes that, at the plasma boundary, 
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which is equivalent to Eq. (15) in [4] with real s  and α . Here  represents the marginal 

stability of the locked (nonrotating) modes, while the mode locking corresponds to 

0=s

0=α . 

 In the Fitzpatrick–Aydemir model [1, 2] 
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)/(= , the real quantity κ  is the measure of the instability 

drive defined by Eq. (11) in [2],  
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with  and 1/ Ω= npg 1/ ΩΩ= φφω , the complex growth rate wmp τ/Γ=  comes from  

dependence of the perturbation amplitude,  is the plasma toroidal angular velocity within 

the inertial layer (one of the important elements in the model),  is a fitting parameter, and 
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describes the dissipation. Expression (6) corresponds to Eq. (73) in [1] or Eq. (5) in [2]. 

 The different conditions for b  at the plasma boundary in the Fitzpatrick–Aydemir and 

the Boozer theories must give different dependencies )( 00 Ωγ  under constraints of each model. 

We compare them and discuss some properties of the results. 

 With Boozer boundary condition (4), equations (2) and (3) give us ),(0 αγ s  and ),(0 αsΩ  

and, finally the dispersion relation [5] 
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which relates the mode growth rate 0γ  to its rotation frequency  with  a parameter. Here 0Ω s
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From (7) it follows that )(slγ  is the growth rate of the locked mode ( ). 00 =Ω

 Equation (7) describes two branches. We are interested in the most unstable one: 
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This shows that, for fixed , the mode rotation can decrease the mode growth rate from s lγ  to 

)(5.0min wl γγγ −= . Therefore, within the Boozer model, the complete rotational stabilization is 
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possible for the modes with wl γγ <  only. The latter means [5] , with  a standard 

measure of the beta gain between the no wall and ideal wall stability limits. In the DIII-D 

experiments, however, the rotational stabilization of RWM was efficient up to  [7]. 

5.0<βC βC

1≈βC

 The Fitzpatrick–Aydemir model with (5) gives the dispersion relation 
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For the modes near the marginal stability (precisely, lγ  and wm τ/Γ  much smaller than wγ ) 

this is reduced to 
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which predicts the increase of 0γ  with increasing rotation frequency, which is opposite to the 

dependence )( 00 Ωγ  in (10). According to (12), the mode with 0<lγ , stable in the nonrotating 

plasma (and  in this case), must be destabilized by the plasma rotation with 00 =Ω

wl γγωφ /2 −> .  

 This destabilizing effect of the mode rotation in the Fitzpatrick–Aydemir model can be 

seen in the exact dispersion relation (11). At the marginal stability 00 =γ  we have 

wm in τ0Ω=Γ ,  with real , and (11) reduces to Iigg = Ig
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which gives us 
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with )/( 2

0

222 Ω+≡ ny ww γγ . For the nonrotating modes ( ) we have  and . 

The mode rotation makes  and, for , we obtain negative  when 
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The smaller κ  at the marginally stable state means deterioration of the plasma stability. Since 

this happens because of the mode rotation, it must be interpreted as the RWM rotational 

destabilization. In other words, the Fitzpatrick–Aydemir model implies that, in the plasma with 

weak dissipation (the original restriction of the model [1, 2]), the locked modes must be more 

stable than the rotating modes. This contradicts to the Boozer theory and to observations [8] 

demonstrating better stability of the rotating modes. 

 The Fitzpatrick–Aydemir model was developed assuming a weak dissipation, which was 

emphasized in [1, 2]. Therefore,  would be more consistent (and even more, ) 

with the model initial constraints than the opposite choice. However, the only way to 

12 <ν 12 <<ν
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completely avoid the rotational destabilization in the Fitzpatrick–Aydemir model is to accept 

. But even in this case this model will not agree with the Boozer model on the range of 

the rotational stabilization, as shown by the relation between the marginal 

12 ≥ν

κ ’s: 
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 With 12 <ν  the Fitzpatrick–Aydemir model gives the rotational stabilization at small  

only which means large . The rotation frequency  of RWM measured in the DIII-D 

tokamak is described as 

y

0Ω 0Ω

)/1( wO τ  [7]. With wn γ=Ω0 , which can be a compromise between the 

need of large 0Ωn  in the model and small 0Ωn  observed in experiments, we obtain 

. This does not allow the rotational stabilization of RWM up to 2/25.05.0 νκ −=F

marg β  near 

the ideal-wall stability limit (or 1≈κ ) which was achieved in the DIII-D experiments [7]. 

 Several experimental tests of the two theories can be proposed. For example, verification 

of the relations (7), (10) and (12). Also, equation (11) implies that, near the stability boundary, 
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if φΩ<<Ω0 , which is always satisfied in RWM experiments with fast plasma rotation [7]. 

This becomes especially simple when 22

0

2

wn γ<<Ω  and can be easily compared with data 

obtained in the tokamaks with varying plasma rotation.  

 The above analysis makes it clear that predictions of the two models on the rotational 

stabilization of RWM are incompatible at any choice of the fitting parameters. Besides, they do 

not allow the RWM stability at β  close to the ideal wall limit while the stable operation in this 

region with plasma rotationally stabilized was repeatedly demonstrated in the DIII-D 

experiments [7]. 
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