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Introduction

The Shafranov shift △ of the magnetic axis in toroidal devices is one of the fundamental pa-

rameters in the description of plasma equilibrium. Wesson [4] provides an exhaustive treatment

of the case when △ is constant. In the case where this shift is a function of the minor radius, a

preliminary analysis was presented by Sandquist [2, 3]. This latter case is treated at length in a

communication to be submitted in the future, with only the salient points presented here.

Non-orthogonal Shafranov coordinate system

In Shafranov coordinates a point on a torus is determined by the position vector

r = Rcosφ î+Rsinφ ĵ+ρ sinθ k̂, with R = R0 +ρ cosθ −△(ρ), (1)

where the coordinates (ρ,φ ,θ) have their standard meaning. Using subscripts to denote differ-

entiation with respect to the corresponding variable, the derivatives

rρ =
[

(

cosθ −△
′
)

cosφ ,

(

cosθ −△
′
)

sinφ , sinθ
]

, (2)

rφ = R [−sinφ , cosφ , 0 ], (3)

rθ = ρ [−sinθ cosφ , −sinθ sinφ , cosθ ], (4)

follow. The Jacobian of the system is defined as

J = rρ · (rφ ∧ rθ ) = ρR(1−△
′ cosθ). (5)

Using these results, one can construct three non-orthogonal unit directions (eρ ,eφ ,eθ ), along

which a vector field is to be analyzed. Their vector properties are

eρ · eφ = 0, eφ · eθ = 0, eθ · eρ = −△
′ sinθ , (6)

eρ ∧ eφ = eθ +△
′ sinθ eρ , eφ ∧ eθ = eρ +△

′ sinθ eθ , eθ ∧ eρ = eφ . (7)

From the expressions for the vectorial operators in Brand [1], it is easily found that

∇ =
eρ

1−△′ cosθ

∂

∂ρ
+

eφ

R

∂

∂φ
+

eθ

ρ

∂

∂θ
, (8)

∇ · f =
1

J

{

∂

∂ρ

[

ρR eρ · f
]

+
∂

∂φ

[

ρ(1−△
′ cosθ) eφ · f

]

+
∂

∂θ

[

R(1−△
′ cosθ) eθ · f

]

}

,(9)

∇∧ f =
1

J

{

∂

∂ρ

[

ρR eρ ∧ f
]

+
∂

∂φ

[

ρ(1−△
′ cosθ) eφ ∧ f

]

+
∂

∂θ

[

R(1−△
′ cosθ) eθ ∧ f

]

}

.

(10)

34th EPS Conference on Plasma Phys. Warsaw, 2 - 6 July 2007 ECA Vol.31F, P-4.070  (2007)



At this point we have to clarify the meaning of the projection of a vector in a non-orthogonal

system of coordinates. A vector AB in an orthogonal reference system can be represented as

AB = x î+y ĵ, where x and y are the measured lengths along î and ĵ. Indeed, the projection of AB

onto the orthogonal axes gives î ·AB = x and ĵ ·AB = y, since i · j = 0. Clearly in the Shafranov

system the vectorial representation of a vector field should be different. We shall look for such

an expression under the requirement that the projection of f onto the unit vectors e1 and e2,

with e1 ·e2 = cosθ0, would reproduce the measured components f 1 and f 2 in the (e1,e2)-plane.

After some elementary operations the result

f =
1

sin2 θ

[

(

f 1
− f 2 cosθ0

)

e1 +
(

f 2
− f 1 cosθ0

)

e2

]

(11)

follows. Since cosθ0 = −△′ sinθ from (6), the sought for expression becomes

f =
(

f ρ + f θ
△

′ sinθ
)

eρ + f φ eφ +
(

f θ + f ρ
△

′ sinθ
)

eθ , (12)

where we have restored the third dimension, went over to the Shafranov coordinates, and omit-

ted second order terms in △′. Since the above representation was derived on the requirement

that its projection should reproduce the measured, physical components of the field, we can

write down immediately the expression for the divergence:

∇ · f =
1

J

{

∂

∂ρ

[

ρR f ρ
]

+
∂

∂φ

[

ρ(1−△
′ cosθ) f φ

]

+
∂

∂θ

[

R(1−△
′ cosθ) f θ

]

}

. (13)

For the calculations involved in the derivation of the curl operator, one uses expressions (7), as

well as the derivatives of the unit vectors as the point travels in the space of the torus, or on the

isoflux surfaces, to eventually arrive at the result

∇∧ f =
[

1

R

∂ f θ

∂φ
−

1

ρR

∂

∂θ

(

R f φ
)

+
△′ sinθ

R

∂

∂ρ

(

R f φ
)

]

eρ +

{

1

ρ

∂

∂θ

(

f ρ + f θ
△

′ sinθ
)

−
∂

∂ρ
( f θ + f ρ

△
′ sinθ)−

1

ρ

[

f θ +△
′ cosθ

∂

∂ρ

(

ρ f θ
)

]}

eφ

+

{

1+△′ cosθ

R

[

∂

∂ρ

(

R f φ
)

−
∂ f ρ

∂φ

]

+
△′

R

[

cosθ
∂ f ρ

∂φ
−

sinθ

ρ

∂

∂θ

(

R f φ
)

]}

eθ . (14)

Plasma equilibrium in Shafranov coordinates

For an axisymmetric plasma in equilibrium, the equations to be analyzed are Ampère’s equation

and the relation between the magnetic and plasma pressure, complemented by the divergence

free magnetic and current fields:

j∧B = c∇p, ∇∧B =
4π

c
j, (15)

∇ ·B = 0, ∇ · j = 0. (16)
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From the pressure balance equation the relation

−
1

ρ

∂ p

∂θ
=

1

1−△′ cosθ

Bρ

Bθ

∂ p

∂ρ
(17)

is deduced, showing that the radial gradient of pressure has to be proportional to the gradient of

pressure along the minor section. Equations (16) are simultaneously satisfied by the two scalar

potential functions ψ and f , such that

Bρ = −
1

ρR

∂ψ

∂θ
, Bθ =

1

R(1−△′ cosθ)

∂ψ

∂ρ
, (18)

jρ = −
1

ρR

∂ f

∂θ
, jθ =

1

R(1−△′ cosθ)

∂ f

∂ρ
. (19)

Furthermore, from the radial and poloidal components of Ampère’s equation the relation

Bφ =
4π

cR
f (20)

was found to exist between the current density function and the azimuthal component of the

magnetic field. Substituting the above expressions in the azimuthal component of Ampère’s

equation, it follows that

1

ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+
1

ρ2

∂ 2ψ

∂θ 2
+

1

R

[

sinθ

ρ

∂ψ

∂θ
− cosθ

∂ψ

∂ρ

]

= −4πR2 ∂ p

∂ψ
−

(

4π

c

)2

f
∂ f

∂ψ
. (21)

This is the sought for equation describing the state of equilibrium in the Shafranov equation.

It coincides formally with the expression for the orthogonal configuration, referred to earlier,

where the Shafranov shift △ is constant and the radial and poloidal directions are orthogonal.
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