Plasma Start-up Optimization with 2nd Harmonic ECR pre-ionization in T-10 Tokamak

RRC’’Kurchatov Institute’’, Moscow, Russia

Pre-ionization with help of Electron Cyclotron Resonance (ECR) waves and ECR assisted plasma start-up are considered as useful tools for discharge initiation in next step devices, in particular in ITER to save the poloidal flux and to avoid an electron beam generation. Second Harmonic ECR waves are proposed for these issues during the first stage of ITER operation. Recently the 2nd Harmonic ECR pre-ionization has been experimentally investigated in JT-60U [1] and DIII-D [2] tokamaks. This paper is devoted to the investigation of the breakdown conditions and ECR assisted start-up with 2nd harmonic ECR waves in T-10 tokamak (R=1.5 m, a=0.3 m) in Deuterium plasmas.

1. Optimization of Ohmic breakdown conditions

Fig. 1 Ohmic breakdown. (a) Dependence of the breakdown voltage (U_{break}) on a prefill pressure (p_{fill}) for two values of vertical correcting field $B_{\text{corr}}=2\times10^{-3}$ T (circles) and $B_{\text{corr}}=0.8\times10^{-3}$ T (triangles). (b) dependence on the vertical correcting field taken at $p_{\text{fill}}=4.5\times10^{-3}$ Pa.

At the first step ohmic breakdown conditions were optimized by changing of the neutral gas pressure and by compensation of the error fields (Fig.1). It led to the decrease of the breakdown voltage down to the value of 4.2 V (in comparison with the value of ~16-20 V in usual case of T-10 operation). That corresponds to the electric field value $E_{||}\leq0.44$ V/m. Delay of the plasma breakdown in relation to the application of ohmic voltage at the minimum of $U_{\text{break}}(p_{\text{fill}})$ dependence has been found to be 15 ms. Breakdown has occurred
in a wide area (r~a). The decrease of the prefilled pressure below the $p_{\text{prefill}}=3 \times 10^{-3}$ Pa has led to the appearance of the electron beam, that has been observed by X-ray and ECE diagnostics.

2. ECR wave initiated breakdown

ECR power $P_{\text{EC}}\approx 0.3-1.1$ MW (2nd ECR harmonic, X-mode, linear polarization) has been used for pre-ionization and ECR assisted startup. Important feature of these experiments is the usage of one gyrotron (P_{EC} up to 0.45 MW) equipped by a focusing mirror. Diameter of the beam of this gyrotron has been equal to 1.6 cm at e^{-1} level. Beams formed by two other gyrotrons in use (total power up to 0.55 MW) had the beam width $d=8$ cm at e^{-1} level. Investigation and optimization of the pure EC breakdown conditions (without application of ohmic voltage) has been done. Development of the ECR initiated breakdown is presented in Fig. 2.

Experiments with variation of the toroidal magnetic field have been done to analyse a link between breakdown position and EC resonance position. Magnetic field has been changed in a range of 2.3-2.51 T that corresponds to the relative shift of resonance position up to 12 cm. Results of the magnetic field scan are shown in Fig. 2, b in terms of line integrated density profiles. It is seen that the breakdown position corresponds to the EC
resonance position (marked by solid lines in Fig. 2, b). The line integrated density profiles are given for Ohmic breakdown case for comparison. It is seen that the breakdown area in case of the EC assisted breakdown becomes narrower than in case of OH breakdown.

Existence of two beams with different width allowed us to investigate dependence of breakdown conditions on power density or wave electric field amplitude. Results of these experiments are shown on Fig. 3. Power distribution inside of the EC beam is shown on Fig. 3, b.

It is clearly seen in Fig. 3,a that in case of narrow EC beam the breakdown occurs earlier and the density increment is higher even in spite of the lower total power value. It is necessary to note that EC wave assisted breakdown in T-10 has been achieved at low EC power value (2nd harmonic ECR), \(P_{ECR} \leq 0.5 \text{ MW} \). As it is seen from the Fig. 2, 3, time delay of the ECR assisted plasma breakdown is \(\sim 10 \text{ ms} \).

Dependence of the breakdown development on toroidal launch angle has been examined using focusing gyrotron. Comparison has been made between oblique launch with \(\varphi_T=21^\circ \) and perpendicular EC power launch \(\varphi_T=0^\circ \). It can be proposed that in T-10 conditions oblique power launch is more favorable than perpendicular one (see Fig. 4 for comparison).
3. ECR assisted plasma start-up

Optimization of the discharge start-up conditions using ECR waves allowed us to decrease the loop voltage and toroidal electric field up to the value close to the ITER requirements at the instant of breakdown and during further discharge development. Plasma current ramp-up rate has been chosen to be equal to 1 MA/s and has been automatically controlled by the feedback control system. Results of the experiments are shown in Fig. 4 for both oblique and perpendicular power launch. Advantage of the scheme with oblique power launch is pronounced: breakdown delay time is shorter; the density reached after the breakdown is higher. It is important to note that the loop voltage during the current ramp-up in case of the oblique EC power launch the loop voltage is close to the ITER requirements at the very beginning. Further increase of the loop voltage is the result of a peculiarity of the discharge positioning control and is the task for further improvement.

It is necessary to note here that additional reduction of the loop voltage value up to the 2.6 V (\(E_\parallel \leq 0.28\) V/m) has been achieved by the decrease of the current ramp-up rate down to the value of 0.7 MA/s.

![Graph showing discharge start-up with two different schemes of power launch. ITER requirements are also shown.](image)

Fig. 4 ECR assisted discharge start-up with two different schemes of power launch. ITER requirements are also shown.

This work has been supported by Nuclear Science and Technology Department of Rosatom and Scientific School Grant (Contract No. 02.516.11.6068)