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Introduction 

Ion flows parallel to the magnetic field in the tokamak scrape-off layer (SOL) are now widely 

suspected to be an important player in the process of material migration, itself known to 

influence fuel retention [1].  In addition to the neoclassical (field direction dependent), 

Pfirsch-Schlüter (P-S) component [2], a second contribution receiving increasing attention is a 

field direction independent flow, thought to be a consequence of the ballooning nature of 

cross-field transport into the SOL.  Previous experiments on TCV have measured the P-S 

component, demonstrating it to be of magnitude and direction expected by simple theory [3]. 

They have also clearly identified a possible “transport driven flow offset”, showing it to be of 

magnitude consistent with radial particle transport in the outboard SOL driven by convective 

interchange motions [3,4]. Nevertheless, given the chosen TCV magnetic equilibrium 

geometry and the measurement location below the outboard midplane of the discharge (see 

Fig. 1a), it was not possible in this earlier study to exclude a particle sink effect of the outer 

divertor target driving a parallel flow extending into the main SOL and of similar magnitude 

to that expected as a consequence of perpendicular transport. In new experiments, described 

here, the shape flexibility of TCV has been used to eliminate this contribution and to 

demonstrate the poloidally localized nature of the ballooning component. Further 

confirmation of the P-S flow component is also provided by these new measurements.   

Experiment 

The magnetic equilibria employed in the present study are shown in Fig.1b,c. All plasmas are 

ohmic L-mode with Ip = 260 kA, R = 0.89 m, a ~0.24 cm, δ95 ~ 0.3, κ95 ~1.5-1.6. In each case, 

experiments are performed with both forward (FWD-B, ion B×∇∇∇ ∇ B drift downwards) and 

reversed (REV-B) toroidal field 

(|Bϕ| = 1.43 T). In all cases Ip is 

reversed with Bϕ to preserve 

magnetic helicity. Apart from field 

direction and shape, the only 

variable parameter is plasma 

density, with discharge pairs in 

FWD and REV-B as closely 

matched as possible. Parallel flow 

profiles are measured with a 5-pin, 

fast reciprocating Mach probe (see 

 
Fig. 1: Magnetic equilibria and reciprocating probe heads used 
for SOL flow studies.  As indicated by the horizontal dashed line, 
the probe enters the plasma always on the machine midplane. 
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photos in Fig. 1), entering the SOL plasma on the machine midplane. For the SNL discharge 

in Fig. 1b, this means that only a very thin radial slice of SOL plasma is sampled (~ 2 cm, see 

Fig. 2). In the case of the SNU configuration, flux expansion provides a wider SOL region. A 

dedicated probe head is required for each of the two equilibria to match the poloidal shape of 

magnetic surfaces.  The central electrodes located on the bar separating the Mach pins are 

used both for turbulence measurements and to provide the radial profiles of local Te, ne and 

plasma potential, φp ~ Vf + 3Te, required for interpretation of the parallel flows. The Mach 

number, M|| = v||/cs, of the latter, is estimated in the usual way from the logarithmic ratio of 

ion saturation currents to the upstream and downstream pins. Ref. [3] provides more detail on 

the probe head and the methodology of these flow measurements. 

Results   

Fig. 2a compiles the flow profiles (mapped onto the outside midplane and given in distance 

from the separatrix) for the SNL configuration for both toroidal field directions and a 6-point 

density scan. The latter is performed discharge to discharge, with two probe reciprocations 

made in the stationary phase of each pulse, providing two separate profiles at any given 

density. The vertical dashed lines indicate the radial location of the first intersection point of a 

flux surface in the SOL with the outside wall at the midplane. Small differences in plasma 

position mean that this location changes slightly for each discharge. The grey shaded zones 

delimit the radial extent of the SOL region which connects fully from inner to outer target, 

whilst the yellow band corresponds to the narrow range of SOL width over which the 

experimental flows are compared with the theoretically expected P-S flow (see Fig. 4).  In all 

figures, negative flows are directed downwards, positive flows upwards.  

 The flow profiles in Fig. 2a display all but one of the features already reported in [3] 

for measurements made in the SNL configuration of Fig.1a (namely ~23 cm below the 

midplane). The flow decreases with increasing density and increasing distance in the SOL, is 

directed towards the inner divertor for FWD-B, towards the outer target for REV-B and is 

thus always co-current.  These directions are consistent with those seen in other tokamaks for 

 
Fig. 2: a) Density scan of the parallel SOL flow radial profile in SNL for FWD and REV-B. The highest 
density is just below the density limit for this equilibrium and plasma current. b) Average profile of FWD-B 
and REV-B flows for each density. 
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measurements in similar poloidal locations and for given field direction. Crucially, the flows 

reflect almost symmetrically about zero for all densities, as shown in Fig.2b, which compiles 

the radial profiles of the average FWD and REV-B flows.  For all densities and throughout 

the SOL, M|| (mean) < 0.05.  Within the error bars of the measurement (not shown), this is 

essentially equivalent to a zero field independent flow component, as would be expected if the 

outboard midplane corresponded to a maximum in the perpendicular particle transport. 

In [3], measurements below the midplane in the equilibrium of Fig.1a, revealed a field 

independent flow offset of magnitude M|| = 0.05 – 0.1 directed towards the outer divertor, as 

expected if outboard transport in the midplane vicinity produced a local “over-pressure” 

above the probe location leading to parallel flow generation directed away from the midplane 

to both inner and outer divertors. The magnitude of this flow has been shown to be perfectly 

consistent with cross-field transport driven by interchange motions [3,4].  However, the open 

divertor geometry in TCV means that flow generation towards the target due to the target sink 

itself in configurations such as that in Fig.1a cannot be excluded as a cause of the field 

independent offset. Such flow of the right magnitude to account for the experiment is 

observed in SOLPS5 simulations without drifts [3].  The new SNL measurements in Fig. 2 

tend to indicate that such target sink flows are in fact absent (but drift simulations, now 

underway, are required as confirmation). Proof that this is indeed the case is offered by the 

results in Fig. 3a, which illustrates the results of a density and field direction scan for the SNU 

equilibrium of Fig. 1c. In this case, the probe reciprocates into the SOL above the outer 

midplane of the discharge (relative to the X-point) and would therefore not expect to feel the 

presence of the outer divertor target sink. The field independent component, shown in Fig. 3b, 

nevertheless clearly shows a tendency throughout most of the SOL for a net flow downwards, 

now in the direction from outer to inner divertor.  This is again consistent with a parallel flow 

pressure drive due to ballooning type radial transport and will not be influenced by the inner 

divertor sink since the target is much too far away. Again, SOLPS5 simulations of these 

plasmas, including drifts, are required to locate the flow stagnation points in the various 

 
Fig. 3: a) Density scan of the parallel SOL flow radial profile in SNU for FWD and REV-B. b) Average 
profile of FWD-B and REV-B flows for each density. 
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geometries. The field dependent flow components in Fig. 3a behave in similar fashion to 

those of Fig. 2a with regard to density and field direction dependence, but exhibit differences 

in radial profile.  The “hump” seen in the profiles at r – rsep ~ 5 mm is reminiscent of those 

reported from C-Mod for a similar probe location [5], but not thus far seen in TCV for SNL 

configurations.  

Neoclassical flows: experiment versus theory   

Turning to the field dependent flow, which Figs. 2 and 3 demonstrate to be the dominant 

component for all but the highest densities, a straightforward comparison can be made 

between experiment and the theoretically expected ion neoclassical P-S flow. An expression 

for the latter derived in the Appendix of [2] reduces to: 
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for large aspect ratio, cylindrical geometry. Here q 

is the cylindrical safety factor, θ the poloidal angle 

of the probe location (θ = 0 defined for a probe at 

the midplane), Er the radial electric field and pi the 

ion pressure. Assuming Ti = Te and  extracting Er 

from ∇φ p, the predicted and measured flows are 

shown in Fig. 4 for all SNL and SNU data in Figs. 

2a and 3a. To improve the quality of gradients fitted 

through noisy experimental data and to account for 

the fact that full radial profiles are not available for 

each density, a 6 mm slice of the SOL over the 

range 6 ≤ (r – rsep) ≤ 12 mm (marked by the yellow bands in Figs. 2a, 3a) has been used to 

estimate the theoretical neoclassical flow. The field independent offset has been subtracted 

from the SNL data. Though there are some notable deviations, in general experiment and 

theory agree remarkably well, particularly when taking account of the simplifying 

assumptions invoked in the derivation of the theoretical expression.  In common with the SNL 

equilibria in Fig.1a for which the flows are reported in [3], it would thus appear that in steady-

state, in the midplane vicinity, Pfirsch-Schlüter parallel flows compensating classical E×B and 

diamagnetic drifts can account fully for the measured toroidal field dependent flow on TCV. 
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Fig. 4: Comparison of experimental and 
estimated neoclassical flows for the SNU and 
SNL plasmas.  
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