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Abstract

The linear response of a dusty (complex) plasma to a moving test charge can be de-

termined using an appropriate plasma dielectric function and a three dimensional Fourier

analysis. Many analytical results have been found for a slowly moving test charge. For in-

termediate and large velocities numerical methods of integration are commonly used. How-

ever general asymptotic results valid at large distances can be found, using a combination

of the residue calculus applied to the zeroes of the dielectric function and the method of sta-

tionary phase for integration over a wave vector component.The method can be expressed

in terms of conditions on the group and phase velocity of waves in the reference frame of

the moving test charge. In particular for a given radial direction the asymptotic response is

determined by wave vectors for which the group velocity is directed radially outwards. The

analysis is close to that due to Kelvin for ship waves in deep water. An essential difference

is that in the present case three spatial dimensions are involved instead of only two, and

also that the dispersion relation for plasma waves is more complicated.

Introduction

The field of dusty or complex plasmas has been one of the fastest growing areas of plasma

physics research. In the test charge approach the plasma response to a localised perturbation is

studied by calculating the electrostatic potential of a test charge moving through the plasma.

The asymptotic form of the wake potential is here found usingthe method of stationary phase.

The results can be related to the Kelvin ship wave analysis [1, 2].

Response to a moving test charge

For a test chargeqt moving with velocityVt through a plasma, the general expression for the

electrostatic potential is given by [3],

φ = qt

8π3ε0

Z
exp[iK � r℄

K2D (K;ω) δ (ω�K �Vt) dω dK (1)

whereD (K; ω) is the dielectric constant function. For the case of a plasmawith a cold dust

component and including charging dynamics this is given by the expression,

D (K; ω) = 1+ K2
1

K2 � ω2
pd

ω2 + i∆ (2)
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whereK1 =q
K2

e +K2
i , ∆ = (K2

dch=K2)(ν0=ω) andKdch=p
4πadnd0Ωv0=Ωu0. The frequen-

ciesν0 = Ωu0 andΩv0 are as defined by Melandsø [4] andωpd is the dust plasma frequency.

Here it is assumed thatν0 << ω. Now we introduce cylindrical coordinates(ρ;ψ;z) where the

z-axis is parallel to the test charge velocityVt . We then haveK � r= K?ρ cosψ +Kkz, whereKk
(� Kz) andK? (� Kρ ) are the parallel and perpendicular components of the propagation vector

K. Carrying out the integrations overψ andKk, Eq. (1) now gives

φ = qt=ε0(2π)2

1
Vt

∞Z�∞

∞Z
0

J0

�
K?ρ

�
exp

�
i ω
Vt

z
��

K2?+(ω=Vt)2
�

D

�q
K2?+(ω=Vt)2;ω�K?dK?dω (3)

whereJ0

�
K?ρ

�
is the zero order Bessel function. (The integration over theδ -function replaces

Kk by ω=Vt.) In order to solve the above Eq. (3), we look for the poles, i.e. whenD (K;ω) =
D

�q
K2?+(ω=Vt)2;ω� = 0. Assuming that poles lie atω = ωn whereωn � ωnR+ iωnI and

ωnI < 0 (since the plasma is stable) we may write

D (K;ω)�D (K;ωn)+ ∂D
∂ ω

(ω�ωn)+ O(ω�ωn)2

where the first term on the right hand side is zero. Using the above equation and by residue

theory we may write Eq. (3) forz< 0 as a sum over the poles as follows,

φ = qt=ε0(2π)2

2π i
Vt

∑
n

∞Z
0

J0

�
K?ρ

�
exp

�
i ωn

Vt
z
��

K2?+(ωn=Vt)2
�

∂D
∂ω jω=ωn

K?d K? (4)

For z> 0 the responseφ = 0. Now the Bessel functionJ0

�
K?ρ

�
takes the formJ0

�
K?ρ

� =p
2=πK?ρ

�
cos

�
K?ρ � π

4

�	
for large argument [5]. Using this expression for the Besselfunc-

tion, Eq. (4) may be written in simplified form as

φ = qt=ε0

2π
i

Vt
∑
n

∑� ∞Z
0

exp
n�i

�
K?ρ � ωnR

Vt
z� π

4

�o
exp[�βnjzj℄p

2πK?ρ
�

K2?+(ωn=Vt)2
�

∂D
∂ω jω=ωn

K?d K? (5)

whereβn = �ωnI=Vt The terms inφ are seen to be spatially damped over lengths 1=βn =
Vt=jωnIj. For the case of a dusty plasma with dynamical charging Eq. (2) may be approximately

solved for weak damping to show that 1=β > 2(K1=Kdch)2Vt=ν0 so that for smallKdch the

damping length is large compared toVt=ν0. Asymptotic approximations for Eq. (5) may now be

found using the stationary phase method for largeρ andz.

Asymptotic form of the wake-potential

The method of stationary phase [6] may be applied to an integral of the form,

f (x; t) = Z
exp(iη (k))F (k)dk (6)
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with η (k) = kx�ω (k) t, whereF (k) andη (k) are real functions and bothx andt are large.

The contributions to the integral where there are rapid oscillations due to the changing phaseη

will average to zero. The only contributions come near stationary points whereη 0(k) = 0 that is

whereω 0 = x=t. By expandingη(k) in a Taylor series about these stationary pointsk= ks, the

asymptotic form of the integral (for largex andt) can be obtained by summing the contributions

from the neighbourhoods of each of these points.

f (x; t)�∑
s

s
2π�ω 00(ks)t eiπ=4 exp(iη (ks))F (ks) (7)

Comparing Eq. (6) with Eq. (5) we make the following identifications,

x��ρ; t � z
Vt

; k� K?; ω(k) � ωnR(K?)
The remaining terms in the integrand of Eq. (5) grouped together are equivalent toF(k). The

stationary phase condition is now,�ρ + 1
Vt

dωnR

d K? z� η 0(k) = 0 (8)

Using the condition for a poleωn that D (jKj ;ωn) = 0, wherejKj = q
K2?+(ωn=Vt)2, the

derivativedωnR=d K? in the stationary phase condition Eq. (8) is found to be givenby,

1
Vt

dωnR

d K? =� Vg[K?= jKj℄
Vg[ωnR=(Vt jKj)℄�Vt

=�V0
gρ

V0
gz

(9)

HereVg is the group velocity in the plasma rest frame andV0
g � Vg�Vt is the group velocity

in a frame moving with the test charge velocity. From Eqs. (8)and (9) it follows thatV 0
gρ=V0

gz=jρj=z i.e. the group velocity in the moving frame must be in the direction of the radial vector

from the test charge. This is the basic condition needed to find the wake pattern in the Kelvin

analysis of ship waves [2].

To find the asymptotic expression for the response potentialusing Eq. (7) we use,

ω 00(ks)� �
d2ωnR

d K2? �
K?=K?s

=� d
d K? � VtVg[K?= jKj℄

Vg[ωnR=(Vt jKj)℄�Vt

�
K?=K?s

� Λ(K?s(θ )) (10)

whereK?s(θ ) are those values ofK? that satisfy the stationary phase condition Eq. (8) for a

given ρ=z= tanθ whereθ is the angle between the radial vector from the test charge and its

velocityVt . Finally the asymptotic form of Eq. (7) may now be written as,

φ � i qt

2πε0
∑

n;�;spK?s exp
n�i

�
K?sρ� ωnR

Vt
z� π

4

�o
exp[�βnjzj℄p

iΛ(K?s)Vt ρ z
�

K2?s+(ωn=Vt)2
�h

∂D
∂ω

i
ω=ωn

(11)

Here it should be noted that several terms (ωn;ωnR;βn; : : :) depend implicitly on onK?s(θ ) and

the angleθ (tanθ = ρ=z).
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Discussion

In this paper, we have found analytical results for the wake potential of a moving test charge

in a multi-component dusty plasma using the method of stationary phase. The derivation leads to

the two conditions used in Kelvin ship wave analysis: (i) Thegroup velocityV0
g in the moving

frame is in the radial direction from the test charge. (ii) The component of the test charge

velocity Vt in the direction of the wave vector is equal to the phase velocity Vp of the waves

(K:Vt = KVp = ω). These two conditions together with a relation between thegroup and phase

velocities are sufficient to determine the small scale structure of the wake [2]. In the case of dust

acoustic wavesVg ∝ V3
p (for ship wavesVg = Vp=2) and numerical results [7] confirm that the

small scale wake structure is close to that given by such a modified Kelvin wave analysis. The

stationary phase analysis performed here also in priciple gives the asymptotic slowly varying

amplitude of the spatial oscillations, Eq. (11).
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