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1. Introduction

We use the drift kinetic formalism of Hazeltine [1], as recently generalized by Simakov

and Catto [2], to obtain expressions for the ion perpendicular viscosity as well as for the

ion and electron parallel viscosities, gyroviscosities, and heat fluxes for arbitrary mean-

free path plasmas. Electron perpendicular viscosity is small and usually of no interest. All

the results are obtained in terms of a few velocity moments of the gyrophase independent

leading order in gyroradius expansion correction to the lowest order distribution function,

the latter being assumed a Maxwellian.

2. Orderings and assumptions

We consider a quasineutral magnetized electron-ion plasma and assume that

δ ≡ (ρ/L⊥) ∼ k⊥ρ ≪ 1, (1)

where ρ is the ion gyroradius, and L⊥ and k⊥ are the characteristic perpendicular equi-

librium length scale and wave vector, respectively. We also assume that

∂

∂t
∼ δ2Ω, v · ∇ ∼ e

M
E · ∇v ∼ C ∼ δΩ, (2)

where Ω and M are the ion gyrofrequency and mass, respectively, e is the unit electric

charge, E is the electric field, v is the velocity variable of the ion drift kinetic equation,

and C is the ion collision operator. Assumptions similar to those given by Eq. (2) are

used for the electron drift kinetic equation as well. Finally, we assume for simplicity

that the leading order distribution functions of both electrons and ions are Maxwellians.

As argued in Ref. [3], the last assumption usually holds for plasmas of interest to the

magnetic fusion confined by magnetic fields with closed flux surfaces in the absence of

strong external driving forces, such as neutral beams or radio-frequency waves. We remark

that this assumption is not essential and can be relaxed.
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3. Viscosities

We evaluate ion viscosity
↔
π≡ M

∫

d3v(vv − v2
↔

I /3)f by forming the Mvv moment

of the full ion kinetic equation:

∂p

∂t

↔

I +∇ ·
(

M

∫

d3v vvvf

)

− en(EV + V E) (3)

−Ω(
↔
π ×b̂ − b̂× ↔

π) +
2m(p − pe)νe

M

↔

I ≈ M

∫

d3v vvCii(f),

where p and pe are the ion and electron pressures, respectively, n is the plasma density, V is

the ion flow velocity, b̂ is the unit vector along the magnetic field B, m is the electron mass,

νe is a characteristic electron-ion collision frequency as defined by Braginskii, Cii is the

ion-ion collision operator, and we dropped several small terms that are of no importance

for this calculation. Then,
↔
π=

↔
π‖ +

↔
πg +

↔
π⊥, where the parallel viscosity

↔
π‖≈ (b̂b̂−

↔

I /3)(p‖ − p⊥) = (b̂b̂−
↔

I /3) M

∫

d3v (v2

‖ − v2

⊥/2)f̄ , (4)

with f̄ the gyrophase averaged ion distribution function. The gyroviscosity is found from

↔
πg=

1

4Ω

[

b̂×
↔

K g ·(
↔

I +3b̂b̂) − (
↔

I +3b̂b̂)·
↔

K g ×b̂
]

, (5)

↔

K g≡ ∇ ·
(

M

∫

d3v vvvf

)

− en(EV + V E),

and the perpendicular viscosity is obtained from

↔
π⊥=

1

4Ω

[

b̂×
↔

K⊥ ·(
↔

I +3b̂b̂) − (
↔

I +3b̂b̂)·
↔

K⊥ ×b̂
]

,
↔

K⊥≡ −M

∫

d3v vvCii(f). (6)

Noticing that

∇ ·
(

M

∫

d3v vvvf̄

)

= (2q2 − 3q1)(b̂κ + κb̂) + ∇ · [(2q2 − 3q1)b̂] b̂b̂

+∇(q1b̂) + [∇(q1b̂)]T + ∇ · (q1b̂)
↔

I ,

with q1 ≡ (M/2)
∫

d3v v‖v
2

⊥f̄1, q2 ≡ (M/2)
∫

d3v v3

‖ f̄1, and κ the magnetic field curvature,

and using the leading order gyrophase dependent ion distribution function f̃1 [1] to obtain

∇ ·
(

M

∫

d3v vvvf̃1

)

≈ ∇A + (∇A)T + (∇ · A)
↔

I , A ≡ pV ⊥ +
2

5
qd,

with V ⊥ ≡ vE +vd, vE ≡ cE× b̂/B, vd ≡ b̂×∇p/(MnΩ), qd ≡ (5p/2MΩ)b̂×∇T , and

T the ion temperature, we eventually arrive at
↔
πg= Mn

[

V ‖vE +
1

4
(V ⊥V ⊥ − V ⊥ × b̂ V ⊥ × b̂)

]

+
2q2 − 3q1

Ω
b̂b̂ × κ (7)

+
1

4Ω
b̂ × (

↔

N +
↔

N

T

) · (
↔

I +3b̂b̂) + Transpose,
↔

N≡ p∇V ⊥ +
2

5
∇qd + ∇(q1b̂).
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Expression (7) for gyroviscosity can be generalized for an arbitrary isotropic in velocity

space [2] as well as for a simply arbitrary leading order distribution function [4].

Evaluation of perpendicular viscosity is more involved and reduces to evaluation of two

integrals:

↔

K

ℓ

⊥≡ −M

∫

d3v vvCℓ
ii(f̃1 + f̃2) and

↔

K

nℓ

⊥ ≡ −M

∫

d3v vv[Cnℓ
ii (f1, f1) − Cnℓ

ii (f̄1, f̄1)],

where superscripts “ℓ” and “nℓ” stand for “linearized” and “non-linear” (bilinear), respec-

tively, while subscripts 1 and 2 indicate the order in δ. Using the self-adjointness of

Cℓ
ii(f), noticing that [5] Cℓ

ii(vvfM) = νiF (x)
(

vv − v2/3
↔

I

)

fM , with νi the characteris-

tic ion collision frequency as defined by Braginskii, fM a stationary Maxwellian, F (x) a

known scalar function, and x ≡
√

Mv2/2T , employing expressions for f̃1 + f̃2 [1, 2], and

performing the integration we can evaluate
↔

K

ℓ

⊥ and ultimately obtain

↔
π

ℓ

⊥= − 3νi

10Ω2

[

↔

W +3b̂(b̂·
↔

W ) + 3(b̂·
↔

W )b̂ +
1

2
(
↔

I −15b̂b̂)(b̂·
↔

W ·b̂) − 1

2
(
↔

I −b̂b̂)
↔

W :
↔

I

]

,

↔

W≡ ∇

(

p V ⊥ +
1

10
qd − q3 b̂

)

− ∇ ln T

(

3

4
p V ⊥ +

9

40
qd + q4 b̂

)

−eE

T

(

p V ⊥ − 3

10
qd − q5 b̂

)

− q7 κb̂ + Transpose, (8)

q3 ≡
5

12
M

∫

d3v v‖v
2

⊥F (x)f̄1, q4 ≡
5

24
M

∫

d3v v‖v
2

⊥xF ′(x)f̄1,

q5 ≡
5

6
M

∫

d3v v‖

[

v2

⊥

4
F ′(x) +

T

M
F (x)

]

f̄1, q6 ≡
5

6
M

∫

d3v v‖

(

v2

‖ −
3

2
v2

⊥

)

F (x)f̄1.

To evaluate the bilinear contribution
↔

K

nℓ

⊥ we use f̃1 [1] to rewrite

↔

K

nℓ

⊥ = 6γM

∫

d3v(2f̄1 + f̃1)

(

V ⊥ · ∇v∇v∇vGM +
2T

5pM
qd · ∇v∇v∇vHM

)

,

γ ≡ (3
√

π/2)(νi/n)(T/M)3/2, GM ≡
∫

d3v′fM(v′) |v − v′|, HM ≡
∫

d3v′fM(v′)/|v − v′|.

Evaluating the integrals we finally arrive at

↔
π

nℓ

⊥ = −3Mnνi

10Ω
b̂ × V ⊥ V ⊥ − 9Mνi

200p TΩ
b̂ × qd qd +

9Mνi

100 TΩ
(b̂ × V ⊥ qd + b̂ × qd V ⊥)

+
q7

Ω
b̂ × V ⊥ b̂ +

2q8

5pΩ
b̂ × qdb̂ + Transpose, (9)

q7 ≡ 12γM

∫

d3v
v‖
v

{

d

dv

(

1

v

dGM

dv

)

+
v2

⊥

2

d

dv

[

1

v

d

dv

(

1

v

dGM

dv

)]}

f̄1,

q8 ≡ 12γM

∫

d3v
v‖
v

{

d

dv

(

1

v

dHM

dv

)

+
v2

⊥

2

d

dv

[

1

v

d

dv

(

1

v

dHM

dv

)]}

f̄1.

The ion perpendicular viscosity
↔
π⊥=

↔
π

ℓ

⊥ +
↔
π

nℓ

⊥ .
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It can be shown that Eqs. (4) and (7) also describe electron parallel viscosity and

gyroviscosity when rewritten in terms of electron quantities. When f̄1 for short mean-

free path plasma [6] is used to evaluate q1 – q8 the general expressions for gyro- and

perpendicular viscosities recover the well-known short mean-free path limit [7].

4. Heat fluxes

The technique described in the previous section can be also used to evaluate the ion

heat flux q ≡
∫

d3v(Mv2/2 − 5T/2)vf . Taking the parallel component we obtain

q‖ = q1 + q2 − 5pV‖/2, (10)

and similarly for the electrons. Evaluation of the diamagnetic and collisional perpendicular

heat fluxes is easiest from the (Mv2/2 − 5T/2)v moment of the ion kinetic equation,

resulting in the standard Braginskii’s expression

q⊥ ≈ 5p

2MΩ
b̂ × ∇T − 1

Ω
b̂ ×

∫

d3v
1

2
Mv2vCℓ

ii(f̃1) =
5p

2MΩ
b̂ × ∇T − 2pνi

MΩ2
∇⊥T. (11)

A similar procedure for electrons also gives the Braginskii’s result for the electron dia-

magnetic and collisional perpendicular heat fluxes.

5. Conclusions

A drift formalism is used to describe heat and momentum transport in arbitrary mean-

free path plasma with a Maxwellian lowest order distribution function. The results are

obtained in terms of few velocity moments of f̄1. Ion viscosity is given by Eqs. (4), (7),

(8), and (9), whereas the electron parallel viscosity and gyroviscosity are given by Eqs. (4)

and (7) rewritten in terms of electron quantities. Electron and ion parallel heat fluxes are

given by Eq. (10), whereas diamagnetic and collisional perpendicular heat fluxes are given

by the standard Braginskii’s expressions.
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