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 The particle distribution function deviation from equilibrium one will linearly 

depends as on parameters from the factors breaking equilibrium distribution, such, as a 

gradients of density, temperature, velocity etc. 

In standard neoclassical theory (SNT) the perturbations connected to a gradient of 

longitudinal and transverse velocities were not taken into account. Let us remind that in 

SNT the magnetic field value on a magnetic surface is used. This value is equal to 

, where  is magnetic field on the plasma magnetic axes, 

 is an inverse aspect ratio, r  is magnetic surface radius, R is major tokamak 

radius,  is poloidal angle.  
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The present analysis (PA) will carry out for an axisymmetric system (tokamak) with 

a small inverse aspect ratio , with a concentric circular flux surfaces for a 

collisionless (banana-regime) plasma and far from the magnetic axes ( , where  

is the radial drift of the particle from the magnetic surface).  
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 In this paper in contrast to SNT we will use the magnetic field value on a 

particle drift trajectory - B . The orbit equation in this approximation is 

given by [1] 
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where  ,   is the Larmor radius, q  is the safety factor, u  is the velocity 

sign, , o  and ぎ are the particle magnetic moment and energy, respectively, 

 is  the local inverse aspect ratio, u  and s  are the velocity sign and the 

poloidal angle in  the point where the drift trajectory intersect the magnetic surface. For    

the passing particles we have . 
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 In SNT the particle trajectory is described with help of three constants-of-motion 

(COM) which are  E, µ and g . In the PA we have five COM, namely E, µ, , , and 

. So, in our case g  is the function of COM and . 
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 In the SNT the particle longitude velocity is equal to the velocity on the magnetic 

surface 

IIsvsvIIs V
~

VcosGVV u?sg-u? , and 

in the PA we use the longitudinal velocity 

on the drift particle trajectory, namely 

IIv V
~

VvII cos),COM(GVV u?ssg-u?
.  

In the figure one can see the curves of 

longitudinal velocity against the poloidal 

angle for different values of u . The SNT 

velocity (u ) is shown dotted, and PA 

velocities are correspondent to . 

From the figure one can see that in the 

SNT the longitudinal velocity is even 

function and in the PA the last is odd 

function. It is obvious that radial gradient of longitudinal velocity is equal to zero in SNT 

( 0 ) and is not equal to zero in PA ( dV ). 
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 Let us decompose  on even part V  and  its perturbation  IIV
~

IIs
~

V
~F

* + gF
g•

•
-?

sgF
-?/-?F-?

g?g s

II
IIs

IIs
IIsIIsIIIIsIIsII

V
~

V
~

V
~

2

cos
V
~

V
~

V
~

V
~

V
~

V
~

V
~

         (2) 

where . R/rF?gF

For  one can obtain from (1) that g>>gF
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where  is the value of X  when E=T,  is normalized particle energy, TX )(T/Ex sg?
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 The local Maxwellian function can be presented as 
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 Let us consider the situation when  and • . In this case we have 

that , that is in such approximation f  coincides with the distribution 

function on magnetic surface f . The function  is isotropic function. 
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 The distribution function f has been written in the form 
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where the functions g  and  are not depended on poloidal angle.  II `g

 To find the functions g  and g  we will use the solvability conditions II `
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for passing particles and 

32nd EPS 2005; Yu.V.Gott et al. : The Charged Particle Distribution Function in a Tokamak Dependent on a Vel... 3 of 4



0
V

)1,f(C)1,f(C2

1
II

vv ?
/?u--?u

Ð
s

s

                                         (13) 

for trapped particles. Here  and s  are poloidal angles where the longitudinal velocity 

changes its sign and C is a collision operator. 
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 In this paper we have adopted the Lorentz operator 
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where   is a collision frequency. p

Using (11), (13) and (14), and neglecting the terms of the second order in g , we have s
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Here <> means averaging along the poloidal angle, and  )2/(xg~g s
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From (2) one can see that perturbations g~  and are determined by the radial gradient of 

longitudinal velocity which is determined by the radial gradient of the toroidal magnetic 

field. 
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 So, the  longitudinal velocity distribution function  is 
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and  the perpendicular velocity distribution function is 
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 A toroidal current  calculated with help of the longitudinal velocity V  and the 

distribution function F  is asymmetry current described in [2]. 
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