Hollow Current Effects on Fusion Alpha Particles Confined in JET

V.Yavorskij1,2, V.Goloborod’ko1,2, K.Schoepf1, S.Sharapov3, C.D. Challis3, P.Neururer1, S.Reznik1,2, D. Stork3

1Institute for Theoretical Physics, University of Innsbruck, Austria, Association EURATOM-OEAW
2Institute for Nuclear Research, Kiev, Ukraine
3Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK

Introduction

Hollow current (HC) operation scenarios realised in JET [1,2] are expected to lead to an increased drift of charged particles outwards from the current hole area. The corresponding enhancement of radial transport may result in an essential degradation of alpha confinement in tokamak reactors as compared to traditional operation with monotonic toroidal currents [3]. In the present study we investigate the effect of a toroidal current hole on the distribution function of fusion alpha particles as well as on the electron and ion power deposition profiles and on the alpha induced current in JET. Numerical results of predictive 3D Fokker-Planck modelling are presented for D-T fusion alphas confined in hollow current JET discharges.

Modelling results

Our kinetic calculations of the distribution of confined alphas are based on a 3D (in constants-of-motion (COM) space) steady-state Fokker-Planck code [4]. The modelling accounts for the fast ion transport resulting from slowing-down of alphas as well as from their pitch-angle scattering on bulk plasma particles in an axisymmetric magnetic field with the flux surfaces (FS) and safety factor profiles corresponding to a specific JET hollow current equilibrium (shot #51976, $I/B = 2.5\text{MA}/3.45\text{T}$). The hollow current profiles are characterised by the normalised flux surface radius, $x_m=r_m/a$, where r_m indicates the position of the maximum value of the current density. The plasma parameters used accord with JET shot #51976. Following Ref. [3] we assume two shapes of the alpha source term: $S_1(r)$ exhibiting pronounced peaking and matching with the fusion source profile of pulse #51976, and $S_2(r)$ representing a relatively flat thermonuclear source profile expected in steady-state operation of a reactor-size HC tokamak.
For total toroidal currents $I \leq 3$MA considered here, substantial current hole sizes will effect strong radial collisional transport even for 3.5MeV alphas. For toroidally trapped particles the radial diffusion rate, $D_{rr}/(a-r_m)^2$, is thus of the order of the pitch-angle scattering rate, while the slowing-down induced radial convection rate, $d_r/(a-r_m)$ is comparable to the slowing-down frequency.

Note in this context the importance of the qualitatively different effect of pitch-angle scattering and of deceleration of alphas. Pitch-angle scattering induced transport resulting in enhanced collisional loss of alphas (~ 0.3-0.5 of first orbit loss) cannot vary the alpha distribution function in the MeV-range as strong as the 40-100 times more influential slowing-down induced radial convection. The typical effect of the current hole induced radial transport on the COM alpha distribution function f_α becomes evident from Fig.1 that exhibits pronounced non-monotonic dependences on the maximum radial coordinate r_{max} of the guiding center along the bounce orbit as well as on the normalised magnetic moment $\lambda = \mu B_0/E$. Since several quantitative characteristics are masked in this 3D plot, we choose to turn to more informative contour representations of f_α in the following figures. Figs. 2, 3 show the contours of the distribution function of 3.5MeV and 1MeV alphas in the (λ, r_{max})-plane for monotonic ($x_m=0$) and for two HC cases ($x_m=0.45$ and $x_m=0.6$) and for $S_1(r)$ source term.

It is seen that the current hole affects the radial distribution of confined 3.5MeV alphas mainly near the inboard bound of the confinement domains. The radial dependence of f_α becomes flatter there in the current hole case with $x_m=0.45$ (Figs.2b, 2e), and appears even non-monotonic for the case $x_m=0.6$ (Figs.2c, 2f) with the maximum of f_α at $r_{max}/a \sim 0.7$, which
differs consequentially from the monotonic current case (Figs. 2a, 2d). Further, in comparison to smaller \(x_m \) (Figs. 3a,b) as well as to counter-going alphas (Figs. 3d,e,f), the distribution of 1MeV co-going alphas in the presence of a large current hole (\(x_m = 0.6 \), Fig. 3c) features a relatively strong non-monotonic dependence also on the normalised magnetic moment with the maximum of \(f_a \) at \(\lambda \sim 1 \). A possible explanation of the non-monotonic profile \(f_a(r_{\text{max}}, \lambda) \) is the enhanced role of slowing-down induced radial convection of fast alphas near the current hole. As seen from Fig. 4, for \(x_m = 0.6 \) the slowing-down of 3.5MeV alphas crossing the plasma core leads to their accumulation in the rather narrow radial range \(0.5 < r_{\text{max}}/a < 0.7 \). Note that in the case of monotonic current the slowing-down of paraxial 3.5MeV alphas results in the distribution of partially thermalised alphas in a rather wide range of \(r_{\text{max}}/a \sim 0-0.6 \) for moderate plasma currents \(I \sim 2-3 \text{MA} \).

Figure 5 displays the FS averaged radial profiles of the alpha particle density \(n \), of the normalised longitudinal velocity \(<V_r>/V_0 \) (\(V_0 = 1.3 \times 10^7 \) m/s, speed at birth), as well as of the normalised electron and ion power deposition profiles, \(P_e/n \) and \(P_i/n \), for different current hole sizes. As shown in Fig. 5a, the presence of a current hole and the transition from a peaked source profile to a flat one cause both reduction and flattening of \(n(r) \) in the plasma core. Further the strong radial convection of fusion alphas associated with larger \(x_m \) shifts the maximum of \(n(r) \) to a radial position in the order of \(x_m \). From Fig. 5b we see for \(r < 0.5a \) that the averaged longitudinal velocity of alphas \(<V_r>/V_0 \) is analogously varied from \(-0.02 \) (flat \(S_z(r) \) and \(x_m = 0 \)) to 0.12 (peaked \(S_z(r) \) and \(x_m = 0.6 \)). At the plasma edge \(<V_r> \) reaches \(\sim 0.2V_0 \) indicating the pitch-angle anisotropy of confined alphas. Note that \(<V_r>/V_0 = j_d/(2enV_0) \),
where j_a is the alpha induced current. Finally Fig. 5c displays the power deposition profiles P_e/n and P_i/n which appear practically unchanged by variation of the shapes of plasma current and fusion source, i.e. they are effected the same way as $n(r)$.

Summary

The current hole induced radial transport in JET hollow current equilibria is demonstrated to influence mainly the spatial distribution of confined alphas in the plasma core while leaving their distribution at the plasma periphery practically unchanged. A non-monotonic radial and pitch-angle distribution of partially thermalised alphas as well as a crucial reduction of their density is observed in the central ($r/a<0.7$) area of the plasma. This peculiarity of the charged fusion product distribution function may be important for alpha driven instabilities in hollow current tokamaks. Non-monotonic current profiles result in a significant reduction and flattening of electron and ion power deposition profiles in the plasma core. The current hole effect on the alpha bootstrap current appears to be important, even most essential in the case of a flat fusion source term. The contribution of fusion alphas to plasma flows is seen to be substantial.

Acknowledgement

This work has been partially carried out within the Association EURATOM-OEAW and under EFDA. The content of the publication is the sole responsibility of its authors and does not necessarily represent the views of the European Commission or its services.

References