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1. Introduction 

      The neoclassical tearing mode (NTM) plays an important role in determining 

tokamak plasma pressure limits, and can lead to disruption [1,2,3]. The basic process of 

the tearing instability is that anti-parallel magnetic field lines reconnect in the plasma and 

form magnetic islands. The result is that the radial particle and energy flux is enhanced in 

the region of magnetic islands and then cause a degradation of confinement. 

       Because of its importance in tokamak plasma research, and ITER in particular, many 

have worked to understand the neoclassical tearing mode [4,5]. Nevertheless, the theory 

of the threshold of the neoclassical tearing instability is still short of being predictive. 

When the nonlinear effects associated with the magnetic island are taken into account, 

two important neoclassical mechanisms need to be investigated carefully [3]. First, the 

bootstrap current inside the magnetic island can provide an additional drive for the island 

in tokamak plasma when 0<dqdp , where p  is the plasma pressure and q  is the safety 

factor. Second, the polarization drift may have a stabilizing effect on small magnetic 

islands and thus provide a threshold to the neoclassical tearing mode. These two 

mechanisms have attracted significant interest and been investigated on JET, DIII-D and 

ASDEX upgrade [6,7,8], for example. They have also been discussed analytically in full 

toroidal geometry by assuming that the width of the island is much larger than the ion 

banana width [3]. The theory suggests that the bootstrap current and polarization drift 

effects may play dominant roles in determining the threshold of the NTM when the 

magnetic island width is comparable to the ion banana width. However, when the island 

is this small, the ion orbit width effects cannot be treated perturbatively, and an analytical 

treatment seems unlikely to be tractable. Therefore, to explain the seed NTM threshold, 

complicated numerical techniques, such as particle simulation, are required. 

      Numerical particle-in-cell (PIC) simulation has proven to be a powerful tool in 

understanding the kinetic physics of various fundamental plasma processes. In fact, drift-

kinetic and gyrokinetic PIC simulations have already been adopted to address the linear 
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growth and nonlinear saturation of the tearing instability [9,10]. In these works, the 

particle simulation was performed in 2D slab geometry for simplicity. This means that 

the bootstrap current and the neoclassical polarization drift cannot be investigated. Full 

3D simulations in toroidal geometry [11] have been developed but such an approach is 

computationally expensive and parameter scans are limited. 

      The purpose of this work is to analytically reduce the full toroidal system to provide a 

2D computation code for simulating the physics of the NTM close to threshold, including 

the effects of bootstrap current and the neoclassical polarization drift. In the simulation 

model, the electrons will be treated analytically for simplicity, following [3]. Such an 

approach is valid because the electron banana width is assumed to be much less than the 

magnetic island width. Ions are more complicated and will be treated numerically using 

PIC simulation. A coordinate system is employed in which the ion distribution function is 

independent of poloidal angle θ , thus reducing the simulation system to 2D. This paper 

describes this analytic  reduction.   

 

2. Simulation model 

      The ion distribution function can be decomposed into an adiabatic and a non-

adiabatic part as follows, 
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There are two fields associated with a magnetic island. First is the parallel component of 

vector potential ||A , which provides the magnetic geometry of the island. Second is the 

electrostatic potential,Φ , created by the differing ion and electron responses to the small 

magnetic island. The non-adiabatic response,ig , is given by the drift-kinetic equation [3]  
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Here, )/( qm φθξ −=  is the helical angle, χ  is the poloidal flux, φχ RBI =)( , ||v  is the 

ion parallel velocity,  ciω  is the ion cyclotron frequency, θ  and φ  are the poloidal and 
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toroidal angles. It is conventional to use the ),,( ξϑχ coordinate system, but this does not 

exploit the close proximity to toroidal symmetry when the island width is small. In fact, 

when the island width is comparable to the ion banana width, analytic theory indicates 

that to leading order the problem can be solved in a 2D spatial coordinate system ),(ξp  

where civIp ωχχ ||)(−= . We expand ⋅⋅⋅+⋅+= )1()0( )( iii grwgg , where the island 

width w  is assumed to be small compared to the radius of the rational surface, r . In 

addition, we define Miii Fgh += )0( . To leading order, the drift kinetic equation provides 

0
,

=








∂
∂

ξϑ p

ih
, which means ih  is independent of θ  in ),,( ξϑp  coordinate system. 

Proceeding to the next order, we have 

      

)(
)(

   

)(

)(
   

)()(

2
,

||||

,

||||

2

,,,

||||

,

)1(
||

i
Mi

d
i

i
Mi

MiMi
d

i

i

d
i

iT
i

i

Mii

i
d

i

i
i

i
d

i
d

i

p

ii

hC
vv

F
v

m

q
F

B

cF
vk

F
v

T

q

v
T

qA

c

v

T

Fq

vv

h
v

m

q
h

B

c

hhh
vk

g

Rq

v

t

h

+
∂

∂
∂
Φ∂−∇⋅Φ∇×+









∂
∂

+
∂

∂Φ
+






















∂
Φ∂Φ

−












∂
∂

−








∂
Φ∂−−=

∂
∂

∂
Φ∂−∇⋅Φ∇×+










∂
∂

∇⋅+








∂
∂

∇⋅+








∂
∂

+








∂
∂

+
∂
∂

Ω

∗

Ω

χξχ

χξξ
ωω

χ

ξ
ξ

ϑ
ϑ

ξϑ

χ
ϑ

χ

ξϑ
χ

χ

χ

ϑχξχϑξ

B

B

vv

(1) 

It can be expressed simply in the form  
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Here, 2/2v=ε , εξ VVV p ,,  are the equation of motion, νS indicates the eight source terms 

in the right side of Eq.(1). νεξ SVVVp ,,, are functions of ( ξϑ ,,p ). In eq.(2), the term 
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involving )1(
ig and the θ -dependence of the other terms can be annihilated by performing 

a θ -average. For passing particles, the annihilation operator is  
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and for trapped particles 
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where |||| / vv=σ  and Tθ  is the angle of the bounce point. These represent averages over 

the ion orbits, and must be performed at fixed p . Thus, the path of integration depends 

on the value of ||v  of particles. The result is an equation for the leading order distribution 

function, ih , that depends on only two spatial variables p  and ξ . 

 

3. Future plan  

      Having obtained the kinetic equation and equation of motion, we are now developing 

the 2D PIC simulation code in ),(ξp  geometry. In the first stage, we will compare our 

simulation results with previous analytical results [3] to provide a benchmark. Then we 

shall investigate the evolution of small-size magnetic islands and quantify the roles of the 

bootstrap current and the polarization drift in the threshold of NTMs. 
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