Coupling between JET Pedestal n_e-T_e and Outer Target Plate Recycling:
Consequences for JET ITER-Like-Wall Operation

K McCormick1, G Maddison3, C Giroud2, M Beurskens2, A Boboc2, S Brezinsek1, T Eich1, W Fundamenski2, S Jachmich1, M Stamp2, H Thomsen1 and JET EFDA contributors*

1 Max-Planck IPP, EURATOM Association, D-85748 Garching, Germany.
2 EURATOM/UKAEA Fusion Association, Culham, Abingdon, Oxon. OX14 3DB, UK.*
3 FZ Jülich GmbH, Institut für Plasmaphysik, Association EURATOM-FZI, Jülich, Germany.
4 Laboratory for Plasma Physics, ERM/KMS, EURATOM-Association Belgian-State, Brussels, Belgium

Introduction: With the tungsten target plates of the JET ITER-Like-Wall (ILW) phase, carbon radiation will be reduced and must be replaced by that of seeded impurities to prolong target plate lifetime. Investigations to this end of ELMy-H (EH) & Advanced Tokamak (AT) scenarios using N$_2$ and Ne along with D$_2$ fuelling have been carried out in matrix fashion (fig. 1, top), whereby the aim was to cover a large variation in divertor power loading P_{div} and temperature $T_{e,div}$ regardless of core performance. The intended effect of impurity seeding is to increase radiation P_{rad} in order to mitigate P_{div} and that of D$_2$ to enhance recycling to further reduce $T_{e,div}$, both being necessary for ILW-compatibility. P_{rad}/P_{in} ranged over 48-66% (EH) and 31-60% (AT). Details on P_{rad} and P_{div} are given in a companion paper /1/. This data set is used to study the interrelationships between the pedestal temperature $T_{e,ped}$ & density $n_{e,ped}$ and the ion flux Γ_i to the outer target plate. An advantage of these studies is the wider range of $n_{e,ped}$ and $T_{e,ped}$ afforded by the use of impurities (fig. 2). Different type-I ELM regimes also prevail: For EH, ν_{ELM} initially decreases with D$_2$ (~20->10Hz). Impurities can provoke compound ELMs (ν_{ELM}≥ 3Hz) as well as augment ν_{ELM} (to 50Hz).

v_{\text{ELM}} (AT) largely spans the range \(\sim 50 - 200\text{Hz}\) increasing with \(D_2\) for the subset selected.

2. Experimental Results: All quantities reported are averaged over \(\sim 1\text{s}\), i.e. over many ELM cycles. This is readily done using \(T_e\) from the ECE radiometer, with the values deviating less than 50eV (<5%) from those gained from the High Resolution Thomson Scattering (HRTS) system. As radiometer values were not always available, \(T_e\) from HRTS is cited, read at the 90% flux surface. Inter-ELM \(T_e\)-excursions in compound ELM phases can more than 200eV (only with Ne in EH) with an average deviation from the mean of \(\pm 100\text{eV}\), otherwise \(\sim 50\text{eV}\). The edge vertical interferometer channel (tangent to 90% flux surface) also enables good time averaging, has a low noise level and none of the potential calibration uncertainties associated with Thomson scattering. It is very closely related to \(n_e\) from HRTS and is taken to define \(n_e^{\text{ped}}\), with a typical uncertainty of \(\pm 10^{18}\text{m}^{-3}\). A rough estimate of \(\Gamma_i\) is obtained from the \(D_\alpha\) line intensity summed over the outer target plate \(\Phi_{\text{div}}\) using \(S/XB\approx30\), i.e. \(\Gamma_i\approx 30 \Phi_{\text{div}}\).

An estimate of \(T_{e,\text{div}}\) is derived from \(P_{\text{div}}\) (IR camera) and \(\Gamma_i\): \(T_{e,\text{div}}=P_{\text{div}}/\left(8\times1.610^{19}\times\Gamma_i\right)\), \(8=\)energy transmission factor. Langmuir probe results from other EH discharges indicate this quantity need be multiplied by 2 to obtain the peak \(T_e\). Values for \(T_{e,\text{div}}\), energy confinement time \(\tau_E\), \(T_{e,\text{ped}}\) and \(n_{e,\text{ped}}\) are plotted vs. \(\Gamma_i\) in fig. 3. Note, \(\Gamma_i\) is largely determined by \(D_2\) (fig. 1).

![Fig. 3: top to bottom, all vs. ion flux to target plate \(\Gamma_i\); \(T_{e,\text{div}}\) computed from \(P_{\text{div}}\) (IR camera) and \(\Gamma_i\); energy confinement time \(\tau_E\); \(T_{e,\text{ped}}\) and \(n_{e,\text{ped}}\). Left ELM-H; Right AT.](image-url)
Higher Γ_i means lower τ_E, with impurities often making matters worse (fig. 3), in particular at lowest Γ_i where a dramatic drop in n_{ped} can occur (also in $T_{\text{e ped}}$ for AT Ne-seeding), associated with an impurity-driven increase in v_{ELM}. Seeded Ne or N$_2$ leads to an obvious enhancement of P_{rad} only at lower Γ_i (-> lower D$_2$) for the present carbon-dominated environment (50->61% for EH, 30->60% for AT) /1/. Evidently $T_{\text{e ped}}$ is not reduced by P_{rad} cooling as one might expect (fig. 3); it does decrease uniformly with higher Γ_i, showing minor impurity variations. In contrast, n_{ped} initially increases with Γ_i (D_2 fuelling), then rolls over.

3. Discussion: SOLPS code calculations for a density scan at constant power (5MW, inner & outer strike points on horizontal target) may be used to examine how the values of Φ_{D} code and Γ_i code are related /2/. The result is for $T_{\text{e div}}>4$eV Φ_{D}~$\Gamma_i^{0.76}$, i.e. S/XB = Γ_i code/Φ_{D} code is not constant (due in part to the S/XB T_e dependence). Nonetheless, D_α code still mirrors Γ_i code over a wide range of $T_{\text{e div}}$, implying that the assumption S/XB=30 is a credible approach to gain a first estimate of the experimental Γ_i from the measured Φ_{D}. Taking the separatrix density n_{es} from HRTS, using a Tanh fit in the gradient region and assuming the separatrix position is correctly given by EFIT, yields the relationship $\Gamma_i\sim n_{\text{es}}^{2.5\pm0.3}$ for both EH & AT. This signifies that Γ_i is a very sensitive probe for changes in n_{es}, n_{es} being more difficult to measure with precision due to the steep gradients in the edge region and uncertainty in separatrix location.

Fig. 4 illustrates that Γ_i (e.g. n_{es}) is closely correlated with n_{ped}/τ_E, meaning an enhancement in Γ_i dictates an increase in n_{ped} and/or a decrease in τ_E must prevail (τ_E is intertwined with the D_2- & impurity-levels). Another correlation exists between Γ_i and $n_{\text{ped}}/T_{\text{e ped}}$ (fig. 4). A least-squares regression (not accounting for errors in n_{ped} & $T_{\text{e ped}}$) yields good fits (given in the fig. 5 caption) to Γ_i over the entire operational ranges for both ELMy-H and AT scenarios.

Fig. 4: Ion Flux Γ_i to outer target plate vs. $n_{\text{es}}^{\text{ped}}/\tau_E$ (top) & $n_{\text{es}}^{\text{ped}}/T_{\text{e ped}}$ (bottom). Left ELMy-H; Right AT.
These encompass an order of magnitude change in Γ_i and a factor of ~ 2 for $n_e^{\text{ped}}/T_e^{\text{ped}}$. The exact form of the fits is not of importance here, rather the demonstration of the very coherent interplay among τ_e^{-1}-n_e^{ped}-T_e^{ped} and Γ_i, illustrated in figs. 4 and 5, i.e. a coupling over the edge transport barrier (ETB) region between the core/pedestal and Γ_i to the outer target plate (and thus n_e). In addition, the estimated n_{es} values won from HRTS are found to be nearly linear with n_e^{ped}/τ_e for both EH & AT (not shown). These are new observations of fundamental nature, implying that any change in Γ_i is automatically accompanied by a change in τ_e^{-1}-n_e^{ped}-T_e^{ped} along the operational curves defined by the points of figs. 4 & 5 and vice versa.

![Ion Flux](image)

Fig. 5: Γ_i vs fit: Left ELMy-H (9.3$10^{13}$ n_e^{ped}11$10^{11}/T_e^{\text{ped}}$13$10^{15}$); Right AT(1.17$10^{30}$ n_e^{ped}08$10^{21}/T_e^{\text{ped}}$22$10^{18}$)[m$^{-3}$,eV]

4. Conclusions: The discovered link among τ_e^{-1}-n_e^{ped}-T_e^{ped} and Γ_i (e.g. n_{es}) suggests a phenomenon such as “stiff profiles” could be in action in the ETB, perhaps in combination with a critical gradient related to ELM onset conditions. This remains to be examined. Stiff ETB profiles have been observed on ASDEX-Upgrade, with η_e~2 being common [3/]. In any case, the observed coupling, whatever its origin, has ramifications when producing ILW-compatible conditions at the target plate: Enhanced Γ_i will be obligatory to suppress T_{e}^{div} to tolerable levels (exact value to be determined at the start of ILW operation) and also to secure reasonable plasma operation in the presence of mandatory seeded impurities. Higher Γ_i is achievable only through D_2 fuelling - leading to higher n_{es} - and through the coupling to higher n_e^{ped}/τ_e or $n_e^{\text{ped}}/T_e^{\text{ped}}$. This chain of events appears unavoidable.

A corollary is that the increase in neutral pressure associated with higher D_2 does not necessarily lead to a lower τ_e because of penetration to the pedestal and reduction of T_e^{ped}. Rather, the change in pedestal parameters is a result of constraints imposed by the established interconnections in association with the change in n_{es}. Similarly, an alteration in pedestal confinement – due to modes, for example, present in some of the selected discharges /1/ or due to the addition of impurities – will also effect a modification of n_{es} and Γ_i.

5. References

1. G Maddison et al., Paper P2.160 this conference
2. D Coster, private communication

This work, supported by the European Communities under the contract of Association between EURATOM and the Max-Planck IPP, was carried out within the framework of the European Fusion Development Agreement.

The views and opinions expressed herein do not necessarily reflect those of the European Commission.