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Introduction.

We analytically derive the structures of the low-frequency shear Alfvén continuous spectrum

due to resonant wave-particle interactions with magnetically trapped thermal ions [1]. Our the-
oretical description asymptotically recovers known results in the relevant limits at both high [2]
and low frequencies [3]; furthermore, it is relevant for assessing the accurate kinetic structures

that are due to shear Alfvén and acoustic wave spectra in toroidal geometry [1]. Since there is
a continuous transition between various shear Alfvén wave and MHD fluctuation branches in

many situations of experimental interest [1, 4], the results reported in the present work are of
practical relevance for their interpretation when used in the theoretical framework of the general

“fishbone-like” dispersion relation [5, 6].

Derivation of the kinetic-inertial layer response.

Since the early observation of Beta induced Alfvén Eigenmodes (BAE), connected with sig-

nificant redistribution of supra-thermal ions generated by Neutral Beam Ion (NBI) heating [7],
significant attention was devoted to exploring low frequency Alfvénic fluctuations in toroidal

confinement devices. Here, by low frequency we mean|ω|≪ωA ≡ vA/qR0, with vA = B/
√

4πρ
the local Alfvén speed,ρ the plasma mass density,q the safety factor andR0 the torus major

radius. A variety of experimental observations have recently renewed the interest in the detailed
structures of the Alfvén continuum at low frequencies; e.g., the observation of a broad band dis-
crete Alfvén spectrum in DIII-D (with toroidal mode numbers in the rangen∼ 2÷40), excited

by both energetic ions (low-n) and thermal ions (high-n) [8] as earlier predicted by theory [2, 9].
A discussion of the connection between low frequency shear Alfvén waves (SAW), MHD

fluctuations, Geodesic Acoustic Modes (GAM) [10] and Zonal Flows (ZF) [11] can be found in
[1, 4, 6] and references therein, along with a brief summary of experimental evidences, which

support the concept that apparently different observations of SAW and MHD modes can be
all described within the unified theoretical framework provided by the general “fishbone-like”
dispersion relation [5, 6]:

iΛ(ω) = δŴf +δŴk , (1)

which is based on the two scale-length essence of singular (inertial/kinetic) and regular (ideal

MHD) structures of the underlying fluctuations. Here, the left hand side (LHS) is the inertial
(kinetic) layer contribution due to thermal particles, while the right hand side (RHS) comes

from background MHD and energetic particle contributions in the regular ideal regions.
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The scope of this work is to summarize the results of Ref. [1] and to provide a syntetic deriva-

tion of the general expression ofΛ(ω), which may be used in Eq. (1) in the whole frequency
range 0≤ |ω| ≪ ωA. We show that the generalΛ expression asymptotically recovers known re-
sults: at low frequency,|ω| ≪ωBi, the Graves and Hastie [3] form of the MHD inertia enhance-

ment is reproduced, whereas at high frequencies,ωBi ≪ ωTi ≈ |ω| ≪ ωA, the former kinetic
theory result of Ref. [2] is obtained. As corollaries of our derivation, we confirm prior results

showing BAE/GAM degeneracy in the long wavelength limit [5, 6, 12] and the identity [12]
of the MHD inertia enhancement factor to the ZF polarizability induced by ion temperature

gradient (ITG) turbulence [13].
We consider a lowβ ≈ ε2 axisymmetric tokamak plasma equilibrium with shifted circular

flux surfaces, where magnetic shears= rq′/q andα = −R0q2β ′ define a two-parameter set of
plasma equilibria.We also employ straight magnetic field line toroidal coordinates(r,ϑ ,ζ ), with
r the radial-like flux coordinate,ϑ the poloidal angle andζ the generalized toroidal coordinate

chosen such thatq= B · ∇ ζ /B · ∇ ϑ = q(r); meanwhile, prime denotes derivation with respect to
r. Furthermore, for the sake of simplicity, we treat all trapped particles as deeply trapped (i.e.,

characterized by harmonic motion between magnetic mirror points) and consider circulating
particles as well circulating (i.e., characterized by constant parallel velocity). Analytic solutions

of the coupled system of quasi-neutrality condition and vorticity equation are found for the
scalar fieldsδφ (scalar potential) andδψ, defined such asbbb · ∇∇∇ δψ ≡ (−1/c)∂tδA‖ (δA‖ the

parallel vector potential), which fully describe SAW and slow magneto-acoustic wave (SMW)
once the fast wave is eliminated assuming perpendicular pressure balance. Solutions at the
leading order in an asymptotic expansion in the smallness parameterω/ωA show thatδφ can be

written asδφ≃δφ0+sinϑδφs andδψ≃ δψ0, with δφ0, δφs andδψ0 slowly varying functions
along the equilibriumBBB field (flute-like). One generally hasδφ0 = IΦ(ω/ωDi ,ω/ωDe)δψ0,

with

IΦ
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= 1+
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2ετ
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)

1+ τω∗ni/ω+
√

2ετ [1−ω∗ni/ω−M(ω/ωDi)− τ−1M(ω/ωDe)]
(2)

describing the non-vanishing “flute-like” component of the parallel electric field due to the
effect of trapped thermal particle precession resonance, which becomes negligibly small for

|ω| ≫ |ωDi|, |ωDe|. Here,ωDs = nq/(rR0)(cTs)/(esB0) for s= e, i is the deeply trapped particle
precession frequency,τ = Te/Ti , ε = r/R0,
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with Z(x) = 1/
√

π
∫ ∞
−∞ e−y2

/(y−x)dy, ω∗ns=(Tsc/esB)(kkk×bbb)· ∇( ns)/ns andω∗T s=(Tsc/esB)

(kkk×bbb) · ∇( Ts)/Ts. One can also demonstrateδφs = S(ω,ωDi ,ωBi,ωTi)(i/nq)r∂rφ0, with ωTi =
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(2Ti/m1)
1/2/(qR0) the circulating ion transit andωBi = (ε/2)1/2ωTi the deeply trapped ion

bounce frequency. Meanwhile, the implicit definition ofS(ω,ωDi ,ωBi,ωTi) is given by

δφs = −
N1(

ω
ωTi

)+∆N1(
ω

ωTi
)+

√
2εP2(

ω
ωDi

, ωBi
ωDi

)

1+ 1
τ +D1(

ω
ωTi

)+∆D1(
ω
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)+

√
2ε

[

P1(
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ωDi
)−P2(
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, ωBi
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)
]

ir
nq

∂
∂ r

φ0 , (5)

whereP1(ω/ωDi ,ωBi/ωDi) = −2(ω2/ω2
Di)[(1−ω∗ni/ω + 1.5ω∗Ti/ω)G2− (ω∗Ti/ω)G4] and

P2(ω/ωDi ,ωBi/ωDi) = −2(ω/ωDi)[(1−ω∗ni/ω + 1.5ω∗Ti/ω)G4− (ω∗Ti/ω)G6] come from

the trapped particles dynamics and, introducingΩ1,2 = 0.5(ωBi/ωDi)(±1+
√

1+4ωωDi/ω2
Bi),

can be calculated from:
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.

The circulating particle response enters the functionsD1(ω/ωTi) andN1(ω/ωTi), with

D1(x) = (1−ω∗ni/ω)xZ(x)−x[x+(x2−1/2)Z(x)](ω∗Ti/ω) , (6)

N1(x) = 2
ωDi

ωTi
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ω

)
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ω
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}

, (7)

while the modified circulating ion response due to finite trapped particle fraction is given by
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x
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Given the framework of Eqs. (2) to (9), the general expression ofΛ2 in Eq. (1) is obtained as [1]:

Λ2/IΦ =
ω2
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A
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ω2
Aω2
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√
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where the last term on the RHS represents the trapped particle contribution, withP3(ω/ωDi,

ωBi/ωDi) = −2[(1−ω∗ni/ω+1.5ω∗Ti/ω)G6− (ω∗Ti/ω)G8] and
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.

Meanwhile, the circulating ion response, inclusive of its modification due to finite trapped parti-
cle fraction, is accounted for byΛ2

cir , which reduces to the prior result with circulating particles

only [2] and, in the more general case analyzed here, is given by [1]
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with the functionsF(x), G(x), ∆F(x) and ∆G(x) defined asF(x) = x
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)
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Relevant limiting cases and discussions.

The general expression forΛ, Eq. (10) obtained in this work [1], can be readily used in
connection with Eq. (1) for analyzing a number of kinetic stability problems involving SAW,
MHD and Alfvénic drift-wave turbulence (DWT). For very low frequencies|ω| ≪ωBi it is easy

to show that the limit of Eq. (10) is [1]

Λ2/IΦ ≃ (ω2/ω2
A)(1−ω∗pi/ω)

(

1+(15/16)
√

2q2ε−1/2 +0.5q2
)

. (13)

The result of Eq. (13) can be compared with that by Graves and Hastie [3]:

Λ2 = (ω2/ω2
A)(1−ω∗pi/ω)(1+1.6q2ε−1/2 +0.5q2) . (14)

The difference between the factors 1.6 and(15/16)
√

2≈ 1.3 in the two equations is due to our

simplified treatment of all particles as deeply trapped/well circulating.
The high frequency (fluid) limit can be obtained for|ω| ≫ωTi in Eq. (10), which gives [1, 2]:

Λ2 = (ω2/ω2
A)

[

1− (7/4+ τ )q2(ω2
Ti/ω2)

]

. (15)

This result on the SAW continuous spectrum accumulation point (Λ = 0) at low frequency
shows that trapped particles do not appreciably alter the dynamics for|ω| ≫ |ωBi|. In fact,

they introduce anO(ε) frequency shift, whereas they provide the dominant contribution to the
plasma inertia at low frequency for|ω| ≪ |ωBi| [3]. These considerations are readily extended

to GAM, by invoking the degeneracy of BAE and GAM spectra in the long wavelength limit
(Λ = 0 andω∗pi = 0) [5, 6, 12]. Based on our present findings, we may conclude that the GAM

frequency shift due to trapped particles isO(ε).
Our results show that the kinetic layer thermal ion response in the Kinetic Thermal Ion (KTI)

gap frequency range [6] is dominated by geodesic curvature, i.e. by transit and/or precession-
bounce resonances. Thermal particle precession resonance enters mainly via the non-vanishing
“flute-like” component (|k‖qR0| ≪ 1) of the parallel electric field, which is negligibly small at

|ω| ≫ |ω̄Di |, |ω̄De|. Moreover, it is evident that kinetic treatments of the thermal plasma com-
ponents are needed for a realistic description of thermonuclear plasmas, where SAW, MHD and

DWT will characterize complex behaviors mediated by their mutual interactions.
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