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I ntroduction

Different kinds of tokamak experiments have been done wherpldsma rotates mainly in the
toroidal direction. Rotation has been induced by e.g. nkloéam injection (NBI). Furthermore,
in astrophysics the plasma in accretion disks also rotateslyin the toroidal direction.

We present the newly developed spectral code PHOENIX which maesfuthe Jacobi-
Davidson subspace iteration method [1] for complex eigem®abmputations. This code is able
to take the toroidal and poloidal rotation of the plasma Eopiim into account for its linear
wave and instability diagnostics. Test cases of this coed@eesented and compared with other
existing codes, like CASTOR [3], ERATO, and PEST-1. Furtheenoecent and new results
are presented with particular emphasis on MHD spectra faostaty tokamak equilibria. These
equilibria include purely toroidal flow or toroidal and palal flow.

Physical model
The plasma inside a tokamak or accretion disk can be modgledhking use of the single-fluid
MHD equations. These equations are

pov =—pv-0Ov—[0p+j xB—pld, (1)
dp=—v-Op—ypd-v, 2)
0B =—-0xE, 3)
&p =—0-(pv), (4)

where the variablep, v, p, andB, ®, andy are the density, velocity, pressure, magnetic field,
gravitational potential, and ratio of the specific heatspeetively. Here, the current dengjity:

00 x B. Furthermore, the simplified form of Ohm’s latr,= —v x B + nj, and the equatiofl -

B = 0 must be satisfied. Her@, is the resistivity. To relate the plasma presspreith the
temperaturd we make use of the ideal gas lags= pT.

We linearize the MHD equations (1)—(4) by assumiimge-dependent fluctuations about a
time-independent axisymmetric equilibrium. For the fluctuations we take thikof@ing depen-
dence

1, 9,,1) = zflm W) expli(md +ng — at)], (5)

whered is an angle chosen such that the magnetic field lines becarighdtin the(3,¢)-
plane. The resulting linearized MHD equations are disoeétizsing a combination of quadratic
and cubic Hermite elements in thi-direction and a Fourier representation in the poloidal
direction. This results in a generalized eigenvalue prable

Ax= ABX, (6)

whereA = —iwandx=[p1,Vy,y,V1,9,V1, Tl,Al’w,Alig,Al,d,]T. Here, theA, j’s are the compo-
nents of the perturbed vector potential. As boundary camditie consider a perfect conducting
wall.
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Jacobi-Davidson method
The Jacobi-Davidson algorithm [1] has been used to find theneaues of the generalized
eigenvalue problem. The generalized eigenvalue probletinedinearized MHD equations (6)
can be written as

Qx = ux, (7

whereQ = (A — gB)~B and the inverse shifted eigenvalpe= 1/(A — o). Here,o is the
specified target frequency. Due to the special block tridiagtorm of A — oB, its LU decom-
position can be computed easily.

At the k-th step of the iterative Jacobi-Davidson (JD) algorithm, igem@vectorx is approxi-
mated by a linear combination of search vectgi§ =,1,2,...,k;k < N). Consider theéN x k
matrix Vi, whose columns are the search vectgrghenx ~ Vys= u for somek-vectors. The
vectorsvj are made orthonormal to each other using the Modified Grarmisitimethod.

Let 6 denote the approximated eigenvalue associated with thexppmated eigenvectan
such that the residual vectoe (Q — 61)u is orthogonal to th& search directions.

In order to obtain a new search direction, the JD method reguhe approximated solu-
tion of the correction equation [1]. This equation can beratlby some iterative method like
GMRES [2].

Applications A
In the PHOENIX code the eigenvalues are normalised to the Alfwée,A = RyA /va, where
Rwv andvp are the radius and the Alfvén speed on the magnetic axis,asglg.

As a first test we compare the PHOENIX code with other existing cddes CASTOR
[3], ERATO, and PEST-1, by investigating an isolated ungtgtbbal mode. For this test case,
we used the analytical solution of the Grad-Shafranov equddi [5] given by Soloviev [6]
for the equilibrium. A JET-like cross-section has been uséith is given bye = 1/3 and
E = 2. Computing the numerical solution of this equilibrium aotther equilibria presented
in this paper we have used the code FINESSE [7]. The PHOENIX reatdtpresented in
Table 1, together with the results of the other codes. Thdtsesfithe other codes are taken
from Kerner et al. [3]. In Table 1g(0) andq(1) are the safety factor at the magnetic axis and at
the boundary, respectively. Furthermore, the eigenvauesormalised to the poloidal Alfvén
time and therefore the growth rates have been multiplied bystfety factor at the plasma
boundaryA = q(1)A = q(1)RuA /va. Itis clear from this table that the agreement between the
different codes is within 1%.

Table 1: Comparison of the eigenvaldé for a specific Soloviev equilibrium from different
ideal MHD spectral codes. The toroidal mode numier —2.
q(0) q(1) PHOENIX CASTOR KERNER PEST-1 ERATO Degtyarev NOVA Spector
0.3 0523 0431 0.429 0.413 0.427  0.431 0.430 0430 0.432
0.7 1220  0.120 0.120 0.118 0.119  0.120 0.121 0.119  0.118

For the second test case, we compare PHOENIX also with the codes@RSWARS [8]
and TERPSICHORE [9]. Again, we use the Soloviev solution for theldrium. For the cross-
section we consider two ellipticaf = 2, and one circulal: = 1, cross-section together with
an inverse aspect rateo= 1/3. The results of this case are presented in Table 2. Theragrde
between the different codes is typically within 0.5%.

As far as we know there is no simple published test case for aiitgaqum with purely
toroidal flow. Therefore we start with an equilibrium based tve $oloviev solution of the first
static test case. In case the plasma rotates, the tempeimagsumed to be a flux function. For
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Table 2: Comparison of the eigenvalﬁléor a specific Soloviev equilibrium with = 1/3 from
different ideal MHD spectral codes.
q(0) E PHOENIX CASTOR ERATO MARS TERPSICHORE

=)

2 03 2 1.255 1.255 1.26 1.26 1.25
-2 07 2 0.284 0.284 0.284 0.284 0.284
-3 075 1 0.05397 0.05384 0.0541 0.0533 0.0538

the equilibrium the following flux functions have been used:

12(g) =A, po(y)=1, po()=AB(1-0.9¢), (8)

whereB = 2.5. The cross-section has been specified by elliptiEity 2, trangularityT = 0.2,

and rectangularity® = 0.01 and the inverse aspect rao= 0.381966. The safety factor on
the magnetic axig|(0) = 0.7. Figure 1 shows the growth rate and oscillation frequency as
function of the rotation frequenc®(0) on the magnetic axis. Here, we used a toroidal mode
numbern = —2 and poloidal mode numbers= [—3,7]. It is clear from this figure that this
particular unstable mode becomes less unstable if onedesltoroidal flow, regardless of the
direction of the flow. If the toroidal flow has some shear thedsmbecomes even more stable.
This stabilizing effect has also been found by Chandra ¢1@].for classical and neoclassical
tearing modes. The figure also shows that the oscillatiorugrqgy scales linearly with the
rotation frequency on the magnetic axf3 £ cst = Re(w) ~ —1.98Q(0) andQ = Qq(1—
0.9¢)) = Re(w) ~ —1.02Q(0)).
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Figure 1: The growth rate (a) and oscillation frequency (ln)siatic equilibrium (solid) and
an equilibrium with toroidal flow (dashed). The rotation fueqcyQ on thex-axis is the value
on the magnetic axis and has been normalized with respect talthén time on the magnetic
axis.

A more stringent test is to find the damped, global ToroidalAhduced Alfvén Eigenmode
(TFAE) which was found by van der Holst et al. [11]. They use anldxgjuum where the density
is assumed to be a flux function. We use the following flux fuoretifor the equilibrium:

12(y) = A(1—0.02850 +0.01045)°), p(y)=1—0.85y,
Po(y) = AB(1— 1.1y +0.2¢%), Q(y) =C,
whereB = 0.0217 andC = 0.0952. These flux functions differ slightly from the ones ubgd

van der Holst et al. [11]. Using the same strategy as describellai article we were able
to find the TFAE, which has in our case & = —0.197. Then-convergence study of this

(9)
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TFAE mode is shown in Figure 2(a), similar to [12]. This studgwsh that the TFAE damping
rate Im(w) ~ —1.4 x 10~4. The perturbed normal velocity for three different poldidende
numbers has been plotted in Figure 2(b). This shows thatrtke2 harmonic is the most
dominant one. The near singular behaviour ap ~ 0.90 is due to the interaction with the
MHD continua.
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Figure 2: (a) Continuum damping of the flow-induced global gapde, and (b) the normal
component of the perturbed velocity;= 5 x 108, Ng =801 m=[-1,5].

Conclusions

The PHOENIX code has been compared with other existing codes.chmparison shows
a good agreement between the different existing codes fat MéiD spectrosopy of static
equilibria. A simple test case with toroidal flow shows that arstable mode becomes less
unstable if there is toroidal rotation. Furthermore, if tlo¢gation profile has some shear the
stabilizing effect is stronger. In this test case the ostdh frequency scales linearly with the
toroidal rotation on the magnetic axis.

The code was used to reproduce the Toroidal Flow induced Al&igenmode found by van
der Holst et al. [11].

In the near future the PHOENIX code will be used to preform spestuaies of equilibria
with purely toroidal and external gravity or equilibria wittrbidal and poloidal flow.
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