
PHOENIX: MHD spectra of
rotating laboratory and astrophysical plasmas

J.W.S. Blokland1, B. v.d. Holst2, R. Keppens1 � 2 � 3, and J.P. Goedbloed1 � 3
1 FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral

Euregio Cluster, Nieuwegein, The Netherlands, ���������	��

���������
2 Centre for Plasma Astrophysics, K.U. Leuven, Belgium

3 Astronomical Institute, Utrecht University, The Netherlands

Introduction
Different kinds of tokamak experiments have been done where the plasma rotates mainly in the
toroidal direction. Rotation has been induced by e.g. neutral beam injection (NBI). Furthermore,
in astrophysics the plasma in accretion disks also rotates mainly in the toroidal direction.

We present the newly developed spectral code PHOENIX which makes use of the Jacobi-
Davidson subspace iteration method [1] for complex eigenvalue computations. This code is able
to take the toroidal and poloidal rotation of the plasma equilibrium into account for its linear
wave and instability diagnostics. Test cases of this code are presented and compared with other
existing codes, like CASTOR [3], ERATO, and PEST-1. Furthermore, recent and new results
are presented with particular emphasis on MHD spectra for stationary tokamak equilibria. These
equilibria include purely toroidal flow or toroidal and poloidal flow.

Physical model
The plasma inside a tokamak or accretion disk can be modeled by making use of the single-fluid
MHD equations. These equations are

ρ∂tv ��� ρv � ∇v � ∇p � j � B � ρ∇Φ � (1)

∂t p ��� v � ∇p � γ p∇ � v � (2)

∂tB ��� ∇ � E � (3)

∂tρ ��� ∇ ��� ρv ��� (4)

where the variablesρ, v, p, andB, Φ, andγ are the density, velocity, pressure, magnetic field,
gravitational potential, and ratio of the specific heats, respectively. Here, the current densityj �
∇ � B. Furthermore, the simplified form of Ohm’s law,E ��� v � B � ηj, and the equation∇ �
B � 0 must be satisfied. Here,η is the resistivity. To relate the plasma pressurep with the
temperatureT we make use of the ideal gas law,p � ρT .

We linearize the MHD equations (1)–(4) by assumingtime-dependent fluctuations about a
time-independent axisymmetric equilibrium. For the fluctuations we take the following depen-
dence

f1 � ψ � ϑ � ϕ � t ��� ∑
m

f̂1 �m � ψ � exp � i � mϑ � nϕ � ωt �! �� (5)

whereϑ is an angle chosen such that the magnetic field lines become straight in the � ϑ � ϕ � -
plane. The resulting linearized MHD equations are discretized using a combination of quadratic
and cubic Hermite elements in theψ-direction and a Fourier representation in the poloidal
direction. This results in a generalized eigenvalue problem:

"
x � λ # x � (6)

whereλ $%� iω andx �&� ρ1 � v1 �ψ � v1 � ϑ � v1 � ϕ � T1 � A1 �ψ � A1 � ϑ � A1 � ϕ  T. Here, theA1 � i’s are the compo-
nents of the perturbed vector potential. As boundary condition we consider a perfect conducting
wall.
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Jacobi-Davidson method
The Jacobi-Davidson algorithm [1] has been used to find the eigenvalues of the generalized
eigenvalue problem. The generalized eigenvalue problem ofthe linearized MHD equations (6)
can be written as �

x � µx � (7)

where
�
� � " � σ # ��� 1 # and the inverse shifted eigenvalueµ � 1� � λ � σ � . Here,σ is the

specified target frequency. Due to the special block tridiagonal form of
" � σ # , its ��� decom-

position can be computed easily.
At the k-th step of the iterative Jacobi-Davidson (JD) algorithm, an eigenvectorx is approxi-

mated by a linear combination of search vectorsv j � j � � 1 � 2 �����	� � k;k 
 N � . Consider theN � k
matrix � k, whose columns are the search vectorsv j, thenx �
� ks $ u for somek-vectors. The
vectorsv j are made orthonormal to each other using the Modified Gram-Schmidt method.

Let θ denote the approximated eigenvalue associated with the approximated eigenvectoru
such that the residual vectorr � �

�
� θ ��� u is orthogonal to thek search directions.

In order to obtain a new search direction, the JD method requires the approximated solu-
tion of the correction equation [1]. This equation can be solved by some iterative method like
GMRES [2].

Applications
In the PHOENIX code the eigenvalues are normalised to the Alfvén time, λ̂ � RMλ � vA , where
RM andvA are the radius and the Alfvén speed on the magnetic axis, respectively.

As a first test we compare the PHOENIX code with other existing codes,like CASTOR
[3], ERATO, and PEST-1, by investigating an isolated unstable global mode. For this test case,
we used the analytical solution of the Grad-Shafranov equation [4], [5] given by Soloviev [6]
for the equilibrium. A JET-like cross-section has been usedwhich is given byε � 1� 3 and
E � 2. Computing the numerical solution of this equilibrium andother equilibria presented
in this paper we have used the code FINESSE [7]. The PHOENIX resultsare presented in
Table 1, together with the results of the other codes. The results of the other codes are taken
from Kerner et al. [3]. In Table 1,q � 0� andq � 1� are the safety factor at the magnetic axis and at
the boundary, respectively. Furthermore, the eigenvaluesare normalised to the poloidal Alfvén
time and therefore the growth rates have been multiplied by the safety factor at the plasma
boundary,̃λ � q � 1� λ̂ � q � 1� RMλ � vA. It is clear from this table that the agreement between the
different codes is within 1%.

Table 1: Comparison of the eigenvalueλ̃ 2 for a specific Soloviev equilibrium from different
ideal MHD spectral codes. The toroidal mode numbern ��� 2.

q � 0� q � 1� PHOENIX CASTOR KERNER PEST-1 ERATO Degtyarev NOVA Spector
0.3 0.523 0.431 0.429 0.413 0.427 0.431 0.430 0.430 0.432
0.7 1.220 0.120 0.120 0.118 0.119 0.120 0.121 0.119 0.118

For the second test case, we compare PHOENIX also with the codes CASTOR, MARS [8]
and TERPSICHORE [9]. Again, we use the Soloviev solution for the equilibrium. For the cross-
section we consider two elliptical,E � 2, and one circular,E � 1, cross-section together with
an inverse aspect ratioε � 1� 3. The results of this case are presented in Table 2. The agreement
between the different codes is typically within 0.5%.

As far as we know there is no simple published test case for an equilibrium with purely
toroidal flow. Therefore we start with an equilibrium based on the Soloviev solution of the first
static test case. In case the plasma rotates, the temperature is assumed to be a flux function. For
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Table 2: Comparison of the eigenvalueλ̂ for a specific Soloviev equilibrium withε � 1� 3 from
different ideal MHD spectral codes.

n q(0) E PHOENIX CASTOR ERATO MARS TERPSICHORE
-2 0.3 2 1.255 1.255 1.26 1.26 1.25
-2 0.7 2 0.284 0.284 0.284 0.284 0.284
-3 0.75 1 0.05397 0.05384 0.0541 0.0533 0.0538

the equilibrium the following flux functions have been used:

I2 � ψ � � A � ρ0 � ψ � � 1 � p0 � ψ � � AB � 1 � 0 � 9ψ ��� (8)

whereB � 2 � 5. The cross-section has been specified by ellipticityE � 2, trangularityT � 0 � 2,
and rectangularityQ � 0 � 01 and the inverse aspect ratioε � 0 � 381966. The safety factor on
the magnetic axisq � 0��� 0 � 7. Figure 1 shows the growth rate and oscillation frequency as
function of the rotation frequencyΩ � 0� on the magnetic axis. Here, we used a toroidal mode
numbern � � 2 and poloidal mode numbersm � � � 3 � 7 . It is clear from this figure that this
particular unstable mode becomes less unstable if one includes toroidal flow, regardless of the
direction of the flow. If the toroidal flow has some shear the mode becomes even more stable.
This stabilizing effect has also been found by Chandra et al.[10] for classical and neoclassical
tearing modes. The figure also shows that the oscillation frequency scales linearly with the
rotation frequency on the magnetic axis (Ω � cst��� Re� ω � � � 1 � 98Ω � 0� andΩ � Ω0 � 1 �
0 � 9ψ ��� Re� ω � � � 1 � 02Ω � 0� ).

Figure 1: The growth rate (a) and oscillation frequency (b) for static equilibrium (solid) and
an equilibrium with toroidal flow (dashed). The rotation frequencyΩ on thex-axis is the value
on the magnetic axis and has been normalized with respect to the Alfvén time on the magnetic
axis.

A more stringent test is to find the damped, global Toroidal Flow induced Alfvén Eigenmode
(TFAE) which was found by van der Holst et al. [11]. They use an equilibrium where the density
is assumed to be a flux function. We use the following flux functions for the equilibrium:

I2 � ψ � � A � 1 � 0 � 0285ψ � 0 � 01045ψ3 � � ρ � ψ � � 1 � 0 � 85ψ �
p0 � ψ � � AB � 1 � 1 � 1ψ � 0 � 2ψ2 ��� Ω � ψ � � C � (9)

whereB � 0 � 0217 andC � 0 � 0952. These flux functions differ slightly from the ones usedby
van der Holst et al. [11]. Using the same strategy as described in that article we were able
to find the TFAE, which has in our case Re� ω � � � 0 � 197. Theη-convergence study of this
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TFAE mode is shown in Figure 2(a), similar to [12]. This study shows that the TFAE damping
rate Im� ω � � � 1 � 4 � 10� 4. The perturbed normal velocity for three different poloidal mode
numbers has been plotted in Figure 2(b). This shows that them � 2 harmonic is the most
dominant one. The near singular behaviour at� ψ � 0 � 90 is due to the interaction with the
MHD continua.

Figure 2: (a) Continuum damping of the flow-induced global gapmode, and (b) the normal
component of the perturbed velocity;η � 5 � 10� 8 � Ng � 801� m � � � 1 � 5 .

Conclusions
The PHOENIX code has been compared with other existing codes. This comparison shows
a good agreement between the different existing codes for ideal MHD spectrosopy of static
equilibria. A simple test case with toroidal flow shows that an unstable mode becomes less
unstable if there is toroidal rotation. Furthermore, if therotation profile has some shear the
stabilizing effect is stronger. In this test case the oscillation frequency scales linearly with the
toroidal rotation on the magnetic axis.

The code was used to reproduce the Toroidal Flow induced Alfvén Eigenmode found by van
der Holst et al. [11].

In the near future the PHOENIX code will be used to preform spectral studies of equilibria
with purely toroidal and external gravity or equilibria with toroidal and poloidal flow.
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