
Equation of state for metals based on Thomas–Fermi model

K.V. Khishchenko, O.P. Shemyakin

Institute for High Energy Densities, Joint Institute for High Temperatures,

Russian Academy of Sciences, Moscow, Russia

To analyze the physical processes at high energy densities, an adequate describing the ther-

modynamic properties of matter over a broad region of states including both the condensed

phase under normal conditions and plasma at high pressures and temperatures is required [1].

In the present paper a semiempirical equation-of-state model, which is based on Thomas–

Fermi theory [2], is proposed. According to this model, the Helmholtz free energy for matter is

considered as a sum of three components,

F(V;T ) = Fc(V )+Fa(V;T )+Fe(V;T ); (1)

describing the elastic part of interaction atT = 0 K (Fc) and the thermal contributions of atoms

(Fa) and electrons (Fe). The first and second components in Eq. (1) are given by interpolation

formulae, the third is calculated within the framework of the Thomas–Fermi model [2].

The volume dependence of the elastic energy under compressionσc > 1 (whereσc =V0c=V ,

V0c is the specific volume atP = 0 andT = 0 K) is given by the relation [3]

Fc(V ) = a0V0c lnσc�3V0c
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providing for the normalizing condition

Fc(V0c) = 0: (3)

As can be readily seen, differentiation of the energy (2) with respect to volume yields an

equation for the pressurePc(V ) which is analogous to the relation proposed previously [4] as an

expansion of the Thomas–Fermi model in powers of the atomic cell radiusrc � (σc)
�1=3.

The value of coefficientb2 in Eq. (2) is determined from the condition of coincidence with the

model of degenerate ideal Fermi-gas of nonrelativistic electrons [5] in the range of compressions

aboveσc � 103–104,

b2 = Z5=31
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whereEH is the Hartree energy,aB is the Bohr atomic radius,mu is the atomic mass unit (amu),

A is the atomic mass (in amu) andZ is the atomic number of an element.

In order to determine the coefficientsb1 andai in Eq. (2), one must solve the problem of

minimization of the root-mean-square deviation of pressure at some pointsVn, n = 1, . . . ,N,
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in the intervalσc = 50–103 from the results of calculation by the Thomas–Fermi model with

corrections [6] subject to the conditions for the pressure, bulk modulus and its derivative with

respect to pressure atσc = 1,

Pc(V0c) =�dFc=dV = 0; (5)

Bc(V0c) =�VdPc=dV = B0c; (6)

B0

c(V0c) = dBc=dPc = B0

0c: (7)

The problem of conditional minimization is solved with the introduction of Lagrange factors

[7]. The values of the parametersV0c, B0c andB0

0c are fitted by iterations so as to satisfy under

normal conditions the tabular value of specific volumeV0 and the values of isentropic com-

pression modulusBS =�V (∂P=∂V )S = BS0 and its pressure derivativeB0

S =
�
∂BS=∂P

�
S = B0

S0

determined by the data of dynamic measurements.

The energy on the cold curve in the rarefaction region (σc < 1) is given by a polynomial [8]

Fc(V ) =V0c
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which provides for a chosen value of the sublimation energyFc = Esub atV !∞ and for Eq. (5).

Note that conditions (3), (6) and (7) leave only two free parameters,l andn, in Eq. (8).

The component of free energy corresponding to the thermal movement of nuclei is defined as

follows,

Fa(V;T ) = 3RT ln
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whereσ =V0=V , γ0 is the value of Grüneisen coefficient under normal conditions.

The thermal contribution of electrons in equation of state for metals is represented in the

following form,

Fe(V;T ) = Ee(V;T )�TSe(V;T ); (11)

Ee(V;T ) = ETF(V;T )�ETF(V;0); Se(V;T ) = STF(V;T ); (12)

where the internal energyETF and enthropySTF are determined according to the Thomas–

Fermi model [2]. To calculate the potential of electrons and nucleus in the electrically neutral

spherical atomic cell, we used the shooting method for the classical fourth-order Runge–Kutta

formula [6] with initial approximation obtained using sweep method with iterations [9]. For

determination of the Fermi–Dirac functions, we used approximation expressions [10].

33rd EPS 2006; K.V.Khishchenko et al. : Equation of state for metals based on Thomas-Fermi model 2 of 4



Figure 1: Shock Hugoniots of aluminum samples with initial porositiesm = ρ0=ρ00= 1 (a),

1.408 (b), 1.493 (c), 1.711 (d), 2.012 (e), 3.013 (f) and 9.796 (g), ρ0= 1=V0 is the normal density,

ρ00 is the initial density of samples. Lines correspond to results of calculations with taking into

account the thermal contribution of electrons (solid lines) and disregarding this contribution

(dashed line). Markers denote experimental points from shock-wave database [11]

The coefficients of equation of state that optimally generalize the available thermodynamic

information for aluminum within the framework of Eq. (1)–(12) are as follows:a0= 6923:207,

a1=�4772:762,a2= 1263:499,a3= 50:038,b1=�5061:082,b2= 1597:1,am =�332:776,

an = 150:754,m = 1:1, n = 1:7266,l = 1, Esub = 12:1, Ta = 0:00089443,D = 0:35667,B =

0:5, γ0 = 1:95, θ0 = 0:2, V0 = 0:3687. The units of measurement for the listed coefficients

correspond to the original unitsP= 1 GPa,V = 1 cm3/g, E = 1 kJ/g,T = 1 kK.

The calculated shock Hugoniots of aluminum samples of different initial density in compar-

ison with experimental data from [11] are presented in Fig. 1. As one can see in Fig. 1, the

equation of state constructed for aluminum adequately describes the experimental data over the

entire range of pressures generated in shock waves.
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