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Introduction

In this paper we consider the effect of electron emission mechanisms on the floating potential

of a dust grain, which is particularly relevant for dust in tokamaks. Imagine a spherical dust

particle which is at its floating potential in a plasma, when we suddenly turn on a flux of emitted

electrons,Γem. In order to understand what happens, we have to consider therelative magnitudes

of the plasma electron flux,Γe, andΓem. We assume singly charged ions.

Limiting Cases

If Γem≪Γe, the floating potential remains negative. The emitted electrons do not significantly

affect the electric field structure around the grain, and areaccelerated into the plasma. The flux

balance at the surface becomes(1−δ )Γe = Γi , whereδ = Γem/Γe.
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Figure 1: Floating potential forδ < 1.

The planar case has already been discussed [1].

We can modify the OML theory to include this ef-

fect, resulting in the following expression
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)
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Vd

θ

)

, (1)

whereVd = eφd/(kBTe), φd is the dust surface po-

tential, andθ = Ti/Te and µ = mi/me. Figure 1

showsVd as a function ofδ for different values of

θ . Electron emission decreases the magnitude ofVd

with increasing emission current. The model breaks

down asδ approaches unity, predicting negativeVd

(positiveφd), which is inconsistent with the normal OML assumption thatthe electron density

obeys the Boltzmann law.

If Γem≫ Γe, the dust grain charges positive. Each emitted electron creates a positive charge

on the grain, and a potential barrier forms. Once the barrieris equal in magnitude the energy

of the emitted electrons, they are trapped, and a steady state can be reached. Thus we can esti-

mate the normalised potential byVd = VOML−eUem/(kBTe), whereVOML is the OML potential

excluding electron emission andUem is the energy of emitted electrons in eV.
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Intermediate Case

Whilst it is not strictly accurate, it is convenient to assume that the emitted electrons have

a well defined temperature. As we have two populations of electrons, we have two Debye

lengths, a plasma electron Debye lengthλD, and an emitted electron Debye lengthλDem. We

decide which of the two populations of electrons is responsible for the shielding by comparing

the magnitudes. IfλDem≪ λD, the emitted electrons perform almost all the shielding, and are

trapped near the dust grain. This means a potential well is formed, which has been observed

in simulations for thermionic emission [2]. The converse situation would imply the emitted

electrons all escape from the field structure.

For our simple model we assumeλDem≪ λD, implying that a potential well exists (fig-

ure 2). The floating condition isIe(a)+ Ii(a)+ I in
em(a)− Iout

em(a) = 0, whereI in
em(a) and Iout

em(a)

correspond to the inward (returning) and outward currents of emitted electrons respectively,

and a is the grain radius. We assume there is a minimum in the potential profile at r = b,

where b > a. Emitted electrons moving away from the grain which reachb escape. Thus

Iout
em(a)− I in

em(a) = Iout
em(b). The emitted electrons are assumed to obey the Boltzmann lawbe-

tweena andb as they are in a repulsive potential, and thereforeIout
em(b) = γ exp(∆Vσ)Iout

em(a),

whereγ = b2/a2, σ = Te/Tem and∆V = (φ(b)−φ(a))/(kBTe) (hence∆φ is positive, whereas

∆V is negative). Using the relationIout
em(a) = δ Ie(a) and combining with the previous equations,

we find Ii(a) = δγ exp(∆Vσ)Ie(a)−1.

Figure 2: A positive grain with a negative

surface potential, having a potential min-

imum at a distancer = b.

As the emitted electrons usually have a lower

temperature than the primary electrons, the over-

all potential is still negative (figure 2). Thus we can

safely assume that all ions that get tob have enough

energy to get toa. We assume that all are collected,

henceIi(a) = Ii(b).

The plasma electrons are in an attractive potential

for a< r < b. We use modified OML considerations

for this region as electrons come not from infinity,

but a finite distance [3]. For a Maxwellian distribu-

tion of electrons

Ie(a) = Ie(b)

[

1−
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1
γ

)

exp

(

∆V
γ −1

)]

. (2)

Using equation 2, the fact thatIi(a) = Ii(b), with the previous equations we find

Ii(b)

Ie(b)
=
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exp

(

∆V
γ −1

)]

(δγ exp(∆Vσ)−1). (3)
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To solve for∆V we need to make an assumption about the potential atb, and the relative mag-

nitude ofa, λD andλDem. We takeλDem≪ λD for simplicity.

Assuminga ≫ λD, we have planar geometry, and can seta ≈ b (γ = 1). We use the Bohm

condition to findIe(b) and a Maxwellian one way flux to findIe(b) which yields

∆V =
1
σ

ln

[

1
δ

(

1−

√

2π(1+θ)

µ

)]

. (4)

To find the potential relative to the plasma, we require the potential atb.
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Figure 3: Floating potential forδ > 1 for

a≫ λd.

Since we have assumedλDem≪ λD, the emitted

electrons dominate the shielding process close to

the dust grain forming a sheath of negative charge

around the grain of width≈ λDem. Most of the emit-

ted electrons are trapped. Thus the plasma sees a

neutral object of radiusa+ λDem, and proceeds to

shield it in the normal way. An estimate forV(b)

is therefore the OML potential, which forθ = 1 is

2.5.

Figure 3 shows the overall potentialVd = V(a)

plotted for various values ofσ = Te/Temandδ . The

potential difference increases asσ decreases, due

to there being more kinetic energy available to the emitted electrons relative to the plasma

population. Similarly, it increases for increasingδ , as a result of there being more secondary

electrons produced. However, one of the most striking things to notice is that asσ increases,∆V

very quickly becomes small. In a typical tokamak plasma,Te ≈ 100 eV,Tem≈ 5 eV, therefore

σ = 20. This part of the model deals with values ofδ above 1, but notmuchgreater, so we take

a valueδ = 10, and this results in|∆V| ≈ 0.12, a small potential difference relative toV(b).

Note that ifλDem≈ λD, the pointb will be at a potential less in magnitude than the OML

floating potential. It is difficult to estimate this potential.

If a ≪ λD we have to consider the spherical geometry of the problem. The inward electron

flux atb can be written in terms of the potential atbusing the Boltzmann relation. For simplicity,

we use OML to estimate the ion flux from infinity tob, and we findΓi(b) = n0(1−V(b)/θ)v̄i.

Inserting the electron and ion fluxes into equation 3 resultsin

(1+V(b)θ−1)exp(V(b))

√

θ
µ

=

[

1−

(

1−
1
γ

)

exp

(

∆V
γ −1

)]

(1− γδ exp(∆Vσ)) . (5)
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V(b) andγ (= b2/a2) both need to be specified before we can solve for∆V. γ is probably re-

lated to the radius of the dust grain, as it is determined byλDem. Hence if we assumeλDem≪ λD,

we can assume that the plasma sees a neutral particle of radius a+λDem. For this analysis, we

will simply choose a value ofγ, and proceed. Once we have chosen this parameter, we can test

various values ofV(b) and solve for∆V to see if the results are consistent with the assumptions.

For example, we have assumed a negative potential, so we mustsatisfy the criterionV(a) > 0

(V has the opposite sign toφ ).
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Figure 4: Floating potentialV(a) against

V(b) with δ > 1 anda ≪ λd for fusion

parameters.

We again takeσ = 20, andδ = 10. Figure 4

showsV(a) againstV(b) for various values ofγ.

The equation yields positive values ofV(a) for only

selected values ofV(b), and that asγ increases in

magnitude,V(a) becomes more negative. The curve

is singular whenV(b) is equal to the OML poten-

tial, in this case 2.5. Due to computational difficul-

ties, results for values ofγ greater than 13 cannot be

computed, however, it seems clear from the graph

that if the particle is very small, the assumption

that the grain is at a negative potential (positiveV)

will be incorrect. If we approximateb asa+λDem,

thenγ = (1+a/λDem)2. Thusγ = 13 corresponds to

a/λDem= 0.38, and we wish to find out about far smaller grain sizes than this. In experiments,

the dust found is< 0.1λD, hence it is likely to be< 0.01λDemgiven our assumptionλDem≪ λD.

If we changeδ by a large amount, we find that the difference between the curves is actually

quite small, suggesting that the geometry is far more important than the magnitude of the current

of secondaries.

Which point on the curves in figure 4 we select is the subject offurther work.
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