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Charge transport in disordered insulators and semiconductors is generally agreed to occur

by transferring of charge (electrons, holes or ions) between localized states or traps that act as

potential wells with respect to the conduction-band level [1]. Crucial to the dynamics is the

trap occupancy, which is believed to have a significant effect on the current-voltage character-

istics [2]. The filling of the traps at higher voltages (strong injections) progressively burns the

localized states through the medium, thus offering more sites available for the conduction. As

a result, the net mobility of the charge carriers is enhancedas their density increases, a phe-

nomenon which relates to the observed dependence of the conductivity on electron density and

electron injection in porous nanocrystalline semiconductors [3], as well as electrical degradation

and breakdown in insulating polymers [4].

In this paper we propose a model of charge transport in disordered solid materials that is

intended to explore the transition to a macroscopically conducting state due to the trap-filling.

Our main finding is the complex and multi-scale character of the transition. Our results can

most naturally be explained within a paradigm of self-organized criticality (SOC), perhaps the

simplest framework that captures the key signatures of slowly driven evolution processes [5].

Description of the model.− Let us consider a hypercubicd-dimensional lattice, whered ≥ 2

is an integer number. Charge can be stored on each node. The lattice nodes are intended to

mimic the traps of real insulating materials. In our model only one particle (unit charge) is

allowed per node. Adding a particle switches the node from insulating to conducting. Particles

are added at random according to the following rule. If the node is empty it absorbs the particle,

otherwise excess charge (one particle) is transmitted to a nearest neighboring node. If several

neighbors are prone to absorb the particle the destination node is a random choice. Tunnelling

of charge between the nodes is forbidden. A compensating potential is applied across the lattice

in proportion to the number of the absorbed particles. We refer to a setting in which the lattice is

confined between two conducting plates exposed to a potential difference. The voltage between

the plates is increased at a rate so slow that all particles are absorbed in traps before a new

charge is added. The trap-filling is thus adiabatic and the system evolves through a sequence of

quasi-stationary states of progressively increasing trapoccupancy.

Of interest is a situation when the concentrationq of the conducting nodes approaches the
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percolation threshold,qc. In this limit, the pair connectedness length (i.e., the size of the biggest

conducting cluster) diverges as an inverse power ofqc− q and forq sufficiently close toqc

exceeds the size of the system (i.e., the distance between the plates). The lattice as a whole then

turns into a macroscopic conducting state out of the initialinsulation state. The insulation is

broken to this point.

As soon as the percolation state is reached forq → qc, a portion of electric charge is trans-

ferred from one plate to the other. We argue that the transfertime is short compared to the

dielectric relaxation time in the system. In fact, once the percolation is established, the free

charges may cross the entire lattice by hopping through onlythe filled nodes which provide

little resistance to the motion. In some sense, the filled nodes offer a runway along which the

current carrying particles may walk without rest, all the way through. The transfer time is esti-

mated as the time it takes for an individual particle to crossthe conducting cluster along a path

of least resistance. On the contrary, the dielectric relaxation time necessitates detrapping of all

particles stored through the lattice. This time, which is basically theRC time of the circuit, is

typically very long due to the huge (compatible with the total number of the absorbing states)

bulk capacity of the medium. A key point is that the two times are scale separated. The argument

of scale separation leads one to propose that (i) the early bird charges reach the other conducting

plate before the bulk populations are significantly perturbed and (ii) these first portions of the

transmitted charge are still small compared to the overall charge stored through the lattice.

Next, we assume that the transmitted charges recombine withthe boundaries or external elec-

tron acceptors or reach the collecting electrode. Because the particle injection rate is adiabatic,

the system is given to dissipate all of the charge which has come through. We now again pursue

with the argument of scale separation by requiring that the charge dissipation time (which is de-

fined by the resistance outside the boundaries) is short compared to the dielectric relaxation time

of the lattice. Once the transmitted charges are gone, the voltage between the plates diminishes

in the proportion. Because the lattice itself cannot store more charge than is permitted by the

potential difference, the average trap occupancy through the lattice is posed to decrease to rein-

stall the equilibrium. This causes a redistribution of the particles between the lattice nodes, with

excess charge left out of the boundaries. The lattice then comes into a state with a diminished

number of the stored particles.

On the other hand, the particles are sources of the conducting nodes and diminishing the

number of the stored particles harms the conduction. If the concentration of the conducting

links now falls below theqc the macroscopic conduction is destroyed and the system turns to

insulate. The reinstalled insulation locks the lattice whose overall conductivity switches to zero.
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Figure 1: The pulses of nonzero conductivity at the percolation point. The numerical model is

set on a square 15×15 lattice which simulates a charge absorbing medium. The percolation

is observed when approximately one half of the initially absorbing nodes are activated. The

observation is split into 5×103 consequent time steps, with an output of 1096 pulses.

More charge cannot be transmitted through the system and thedynamics tend to relax.

The onset of relaxation is a proper moment for the external drive to come into play. Because

the plates are constantly exposed to the slowly growing potential difference, the equilibrium trap

occupancy now reclaims an increased concentration of the conducting nodes. To respond to the

changing external conditions, the lattice attempts a new climb of the percolation threshold. At

the end of the day, the circuit unlocks to permit a new releaseof electric charge. The final

state of the system is likewise multi-scale self-adjustingdynamical state which fluctuates near

the percolation point. This state bears signatures enabling to associate it with the state of self-

organized criticality. A computer realization of the phenomenon is summarized in Figs 1−2.
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Figure 2: Dynamics of the critical state: Fluctuations of the bulk occupancy (top), potential

difference (middle), and cross-lattice electric current (bottom).
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