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Considering the continuous interplay of charged particles with magnetic surfaces in fusion de-

vices, it seems to be of interest to consider their dynamic behaviour once an equilibrium state

has been reached. For an axisymmetric configuration in the large aspect ratio approximation,

we show that for a flux surface of circular cross section, particles are constrained on a toroidal

flux surface if their angular momentum lies between certain limits. A second requirement is that

the particles have to rotate with a characteristic frequency which is a combination of the value

of the flux surface and the energy and mass of the particles.

b y

Consider a point at position

x = (b+ y)cosφ e1 +(b+ y)sinφ e2 + z e3 (1)

in the toroidal system

ds2 = dy2 +(b+ y)2dφ 2 +dz2. (2)

The magnetic field is defined to be of the form

B =
1

b+ y
∇ψ × (0,1,0)+Bφ (0,1,0), (3)

which, in an axisymmetric system where ∂/∂φ = 0, becomes

∂

∂ z

[

(b+ y)Aφ −ψ
]

= 0,
∂

∂y

[

(b+ y)Aφ −ψ
]

= 0, (4)

for the radial and axial components. Here Aφ is the azimuthal component of the vector potential.

Multiplying (4) respectively by ż and ẏ and then adding, we obtain

d

dt

[

(b+ y)Aφ −ψ
]

= 0, (5)

which is the requirement for the point to lie on an equilibrium surface. From this we obtain

(b+ y)Aφ −ψ = ψc, (6)

where ψc is a constant, signifying a specific flux surface. From the Lagrangian [1]

L =
m

2

[

ẏ2 +(b+ y)2φ̇ 2 + ż2
]

+
e

c

[

ẏ,(b+ y)φ̇ , ż
]

·
(

Ay,Aφ ,Az

)

(7)
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we obtain the equation of motion for the axisymmetric component,

d

dt

(

∂L

∂ φ̇

)

=
∂L

∂φ
, (8)

from which is follows that

d

dt

∂L

∂ φ̇
= 0,

∂L

∂ φ̇
≡ constant, say Jφ . (9)

The energy is given by

E = q̇
∂L

∂ q̇
−L =

m

2

(

ẏ2 + ż2
)

+
m

2
(b+ y)2φ̇ 2. (10)

It follows that

m(b+ y)2φ̇ +
e

c
(b+ y)Aφ = Jφ . (11)

Substituting (6) into this expression leads to

φ̇ =
M

m(b+ y)2
, (12)

where the definition

M = Jφ −
e

c
(ψ −ψc) (13)

was used. With this result the expression for the energy (11) becomes

E =
m

2

[

{

d(b+ y)

dt

}2

+ ż2

]

+
1

2m

M2

(b+ y)2
, (14)

where we have used the fact that d(b+ y)/dt = ẏ. Let

r = b+ y (15)

so that

E =
m

2

[

ṙ2 + ż2
]

+
1

2m

M2

r2
. (16)

From (5) we obtain

ż = −ṙ
[rAφ −ψ],y

[rAφ −ψ],z
(17)

which, upon substitution into the energy (17) leads to

E =
m

2
ṙ2

(

1+Φ(r)
)

+
1

2m

M2

r2
, (18)

where the definition

Φ(r) =

[

(rAφ −ψ),y

(rAφ −ψ),z

]2

(19)
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was used. It follows that

dt =
dr

√

2
m

(

E − 1
2m

M2

r2

)

1
1+Φ(r)

. (20)

A readily tractable application is that of the invariant surface being a circle. Mapping (6) onto

this surface, we can write

ψ − rAφ = ψ0 ≡ r2 + z2 = (b+ y)2 + z2 (21)

up to a constant κ which takes care of the units. Here ψ0 = |ψc|. It follows that

∂

∂y

[

rAφ −ψ
]

= 2(b+ y) and
∂

∂ z

[

rAφ −ψ
]

= 2z, (22)

so that (20) becomes

Φ(r) =
(b+ y)2

z2
=

r2

ψ0 − r2
(23)

and (21) is written as

dt = m
√

ψ0
rdr

√

−2mEr4 +(2mEψ0 +M2)r2 −M2ψ0

. (24)

Substituting r2 = χ, so that 2rdr = dχ, it follows that

dt =
m

2

√
ψ0

dχ
√

−2mEχ2 +(2mEψ0 +M2)χ −M2ψ0

. (25)

From Gradshteyn and Ryzhik (p.81, expression 2.261) we obtain the result

∫

dt = t = −
√

mψ0

8E
sin−1 −4mEχ +M2 +2mEψ0

M2 −2mEψ0
, (26)

which is rewritten as

(b+ y)2 =
1

2

(

M2

2mE
+ψ0

)

+
1

2

(

M2

2mE
−ψ0

)

sin(Ω0t) (27)

where

Ω0 =

√

8E

mψ0
(28)

is the characteristic frequency of a particle with mass m and energy E. From (22) we obtain

z2 = ψ0 − (b+ y)2 =
1

2

(

ψ0 −
M2

2mE

)

[

1+ sin(Ω0t)
]

. (29)

For z to be a real function, the condition

ψ0 −
M2

2mE
> 0 (30)
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must be satisfied, or equivalently,

(M +
√

2mEψ0)(M−
√

2mEψ0) < 0. (31)

This gives the necessary condition for a particle to get trapped on a flux surface. We can rewrite

these expressions in a different form by defining

A =
1

2

(

ψ0 +
M2

2mE

)

and B =
1

2

(

ψ0 −
M2

2mE

)

. (32)

Equations (28) and (30) become respectively

(b+ y)2 = A−Bsin(Ω0t) (33)

and z2 = B
[

1+ sin(Ω0t)
]

. (34)

Using (35), expression (13) can be rewritten as

dφ

dt
=

M

m

1

A−Bsin(Ω0t)
, (35)

so that

φ =
M

m

∫

dt

A−Bsin(Ω0t)
. (36)

Since

A2 −B2 =
M2ψ0

2mE
(37)

it follows that A2 > B2, so that we can use Gradshteyn and Ryzhik (p.174, expression 2.551.3)

to obtain

φ =
2M

mΩ0

1√
A2 −B2

tan−2

[

A tan
(

1
2
Ω0t

)

−B√
A2 −B2

]

. (38)

With observation (39) and also
2M

mΩ0

1√
A2 −B2

= 1, (39)

it follows that

tan2 φ =
A√

A2 −B2

[

tan

(

Ω0t

2

)

− B

A

]

. (40)

Thus expression (36) and (42) give the complete analytical solution for charged particles trapped

on isoflux surfaces in the low-aspect ratio approximation. In this simplified model it is seen that

the particle rotates with a characteristic frequency Ω0.
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