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Instituto de Ciencias Nucleares, UNAM,

A. Postal 70-543, Mexico D.F. MEXICO

I. Introduction

The Earth magnetosphere is the place where geomagnetic storms originate as energetic

flows of solar wind plasma interact with it. One of the most common events occurring

in these episodes is magnetic reconnection which accelerates charged particles that in

turn give rise to the aurora. This process can take place either in the day-side or in

the geomagnetic tail, when two plasma regions having opposite magnetic polarities are

pushed together in what is known as driven reconnection. Since magnetospheric, as well

as solar wind plasmas are effectively collisionless, the mechanism for current limitation

that leads to reconnection has to come from non-ideal effects such as electron inertia.

Other effects, like the Hall term in the generalized Ohm’s law, may also contribute

to the phenomenlogy. Many studies on collisionless magnetic reconnection have been

made including various terms in Ohm’s law, with and without a neutral sheet, but few

are directly applicable to the magnetospheric conditions.

For the parameters at the magnetosphere, n ∼ 1010cm−3, T ∼ 6eV , B ∼ 10−4G,

the ion-soumd gyroradius is ρs ∼ 2 × 10 km while the electron inertial skin depth is

de ∼ 1 km. This regime with ρs > de was not considered in [1], where driven magnetic

reconnection about an X-point was studied. In contrast, this regime was addressed in

[2] but for the parameters relevant for the VTF experiment, including a constant guide

field perpendicular to the X-point. On the other hand one finds that β ∼ 1/4, so that

the relevant range to consider has ρs/de > 1 but β < 1. Here we study the evolution

of an X-point configuration for the regime ρs > de and in presence of a guide field

(relevant to day-side reconnection), for a compressible collisionless plasma taking into

account the Hall effect. We use the full nonlinear equations as opposed to the works of

[1] and [2], where the linearized equations were analyzed analytically and numerically.

II. Driven collisionless evolution

We consider a cartesian goemetry with a 2D dependence having an equilibrium X-point

configuration in the (x, y) plane and a guide field in the z direction. The magnetic field

is represented by B = ẑ×∇+ψ(x, y, t)+Bz(x, y, t)ẑ. The equilibrium magnetic poten-

tial is ψ0 = B′

⊥
xy and is characterized by a scale length defined by l0 ≡ Bz0/B

′

⊥
,where

Bz0 is the guide field. The plasma velocity is written in terms of the potentials φ and

χ (related to the compressibility) as v = ẑ ×∇φ(x, y, t)∇χ(x, y, t) + vz(x, y, t)ẑ. Then

the two fluid equations are taken under the orderings, β < 1 and l0/di ≫ 1, where

di is the ion skin depth. In the limit vz → ∞, they can be reduced to a set of three
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equations for the variables ψ, φ and the density contained in ξ ≡ l0/di ln(n/n0), with

n0 the equilibrium density. These equations are [3]:

∂U

∂t
= [U, φ] + [ψ,∇2ψ] (1)

∂

∂t
(ψ − d2

e∇
2ψ) = [ψ − d2

e∇
2ψ, φ] − ρ2

s[ψ, ξ] (2)

∂ξ

∂t
= [ξ, φ] + [φ,∇2ψ] (3)

where U ≡ ∇2φ, [f, g] ≡ ẑ · ∇f × ∇g, and all variables are normalized according to

φ → φ(τA/l
2), ψ → ψ/(l2B′

⊥
), the lenghts to the system size l, and the time to the

Alfvén time, τA = (4πn0mi)
1/2/B′

⊥
. The term proportional to ρs in (2) is related to

the electron compressibility and the ions are assumed to be cold. The Hall term is

included, although the parameter di that characterizes it does not appear under the

ordering assumed.

A linearized version of this set of equations was studied in [1,2], for the case of

forced reconnection by an induced electric field in an X-point, finding time-asymptotic

analytical solutions that were corroborated numerically. A nonlinear simulation of a

similar model was made in [4] but for an initial equilibrium of the type of a neutral

current sheet and for parameters not appropriate for the magnetosphere. The linear

approximation is valid for a weak forcing and it can be reduced for a single equation

when an ansatz for separating the variables is made, due to the symmetry of the

geometry: ψ1(x, y, t) = ψ(x, y)+ψ(y, t) and φ1(x, y, t) = φ(x, y)−φ(y, t). The resulting

equation for j(x, t) ≡ ∂2ψ(x, t)/∂x2 is

∂2

∂t2
[(1 − d2

e

∂2

∂x2
)j] = x2

∂2j

∂x2
+ 3x

∂j

∂x
− ρ2

s

∂2

∂x2
[x
∂

∂x
(x
∂j

∂x
)]. (4)

This can be solved using a Laplace transform method to find the time asymptotic

behavior when the reconnection is driven by an influx at x → ∞ of magnitude v∞. If

the initial stream function at the boundary (x, y → ∞) is taken to be,

φ(x, y, t = 0) =
v∞l0

4
ln

(

y2 + δ2

x2 + δ2

)

, (5)

the solution for the current at the center (X-point) tends to a constant value [2]:

j(0, t → ∞) → v∞Bz0τAρs/2δ
2 and consequently, the central magnetic potential

(ψ(0, t) ∼ d2

ej(0, t)), that measures the reconnected flux, also approaches a constant.

Here δ is a parameter used to avoid singularities and is of the order of ρs.

In order to include cases where the forcing is not small, we need to keep the nonlinear

equations. We have developed a numerical code that solves the system of equations

(1-3) for a finite domain, so that, the boundary conditions are applied at (x, y) = ±L.

In all simulations here, L = 1. The reconnection is driven by an induced flux at the

boundaries which increases from zero at t = 0. The boundary conditions are:

ψ(±1, y, t) = ±B′

⊥
y + f(t), ψ(x,±1, t) = ±B′

⊥
x+ f(t) (6)
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Figure 1: Contour plots for ψ, φ, j, ξ and U .
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φ(±1, y, t) =
1

4B′

⊥

df(t)

dt
ln(y2 + δ2), φ(x,±1, t) = −

1

4B′

⊥

df(t)

dt
ln(x2 + δ2) (7)

and ξ(±1, y, t) = ξ(x,±1, t) = 0, where f(t) = v∞Bz0τd(1− (1+ t/τd) exp[−t/τd]). The

initial conditions are: ψ(x, y, 0) = B′

⊥
xy, φ(x, y, 0) = 0 and ξ(x, y, 0) = 0.

The results of the preliminary simulations are shown in Figure (1). which show the

contour plots of the relevant parameters for a typical case at a time not very advanced

in the evolution. There we show the magnetic flux ψ =const. (field lines), stream

function φ = const. (velocity field), current j =const., as well as level lines for density

and vorticity, for a time corresponding to t = 4τA. The values of the parameters used

are: ∆t = 0.005, ρ2

s = 0.2, B′

⊥
= 0.6, d2

e = 0.02, v∞l0 = 0.04 and τd = 0.5. A small

numerical dissipation was included for the three variables. The chosen magnitude of

the forcing is moderate, so the linear theory is not sure to be applicable. At this stage

there has not been mixing of modes, so the contours look still regular.

One important parameter to consider is the reconnected magnetic flux which is

given by the value of ψ at the X-point. In Figure (2) ψ(0, 0, t) is shown for three

different cases. In the weak forcing case, represented by the short-dashed line, a value of

v∞l0 = 0.005 was used. It is clear that the reconnected flux approaches asymptotically

a constant value, which was almost reached for t = 5τA. This is the result found above

analytically and agrees with the results reported in [2], except that in [2] there is an

oscillation as the asymptotic limit is reached. This may be due to the fact that here

we used τd = 0.1 meaning that the velocity drive lasts for only a short time. The other

two curves are for stronger drives. The solid line is for v∞l0 = 0.04 and τd = 0.5,

while the long-dashed line is for v∞l0 = 0.05 and τd = 1. While the later case starts
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Figure 2: Time evolution of the recon-
nected flux for three runs having different
strength and duration of the forcing.
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Figure 3: Spatial structure of the current.

slower it soon grows up very fast and surpasses the former. In both cases there is an

exponential growth that, for the times shown, has not started to decline. However,

there is no evidence (for the simulated times) of settling to a constant value as in the

weak forcing case.

Space structure: The important point to look in our study is the way the relevant

parameters vary in space. In Figure (3) we show the variation of the current along a

line through the X-point for a time t = 4τA and a case of moderate forcing. We notice

that the spatial scale near the edge is of the order of de ∼ 0.1, which is in agreement

with the results of [1]. They also found that the current develops a structure of a

wave-packet type, for late times, but we do not obtain that, up to the times reached.

III. Conclusions

The results obtained for the nonlinear evolution of an X-point configuration are a

generalization of the linear results found previously [1,2], which should be applicable

to the reconnection process in the day-side of the magnetosphere. We developed a code

that solves the reduced equations, but it has the drawback that it takes a long time

to run a single case. For that reason, the simulations presented here have not been

followed long enough in time, such as to be able to establish the asymptotic behavior

of the reconnected flux for the case of strong forcing, but there is indication that it

does not approache a constant value as in the linear case.
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