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Abstract

Lattice kinetic schemes has been consistently developed for the last 15 years as a tool to tackle

complicated problems from a mesoscopic perspective. The system is described by a velocity

distribution function, which follows a BGK kinetic type equation and is evolved under speci�c

constrains in order to ensure a desired macroscopic behavior. This mesoscale scheme has been

recently extended to MHD con�gurations with noticeable success.

In the present work the in-house 3D MHD lattice kinetic code is properly modi�ed to simulate

dissipative �ows in a toroidal geometry. The evolution of the MHD �eld is followed in time via

the aforementioned lattice kinetic solver and numerical results are reported for space dependent

and overall quantities.

Formulation

The numerical implementation of the method is based on the discretized Boltzmann equation

with a BGK formulation of the collision term (LBGK), which takes the form

¶t fi + x i � Ñ fi = �
1
t

( fi � f (0)
i ) (1)

where fi = f (x;x i ; t), with x the spatial vector,x i the microscopic velocity set chosen,t

the time andt the relaxation time, all in dimensionless quantities. For the isothermal case,

the equilibrium distribution function is given by a low Mach number series expansion of the

Maxwellian as

f (0)
i = r wi

�
1+

x i � u
q

+
(x i � u)2

2q2 �
u � u
2q

�
; (2)

with the weighting factorswi depending on the lattice andq = c2
s. In 3D space, there are

several lattice models that can be used for the hydrodynamic part of the problem, utilizing 15,

19 or 27 discrete velocity vectors. We chose to perform our simulations with the 19-velocity

model (Figure 1a) incorporatingcs = c=
p

3 with c = dx=dt being the lattice speed andwi the

corresponding weights [1,2].

The macroscopic quantities can be computed by moments off , i.e.r = å i fi andr u = å i x i fi ,

wherer andu are the density and velocity vector respectively and the viscosity of the �uid is

given byn = t c2
s.
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Figure 1: Discrete velocity lattices a) hydrodynamic (3DQ19), b) magnetic (3DM7).

A corresponding formulation can be used for tracking in time the induction equation [2]. We

use a vector distribution function with its zeroth moment providing the magnetic �eld vector

B = å M
j= 0g j .

The evolution ofg j obeys a BGK-type kinetic equation

¶tg j + X� Ñg j = �
1
t m

(g j � g(0)
j ) (3)

whereg(0)
j are the corresponding equilibrium distribution functions given by

g(0)
jb = Wj

�
Bb + Q� 1X ja (ua Bb � Ba ub )

�
(4)

with a ;b denoting the spatial directions andX the corresponding discrete velocity vector

(not necessarily the same asx). The magnetic �eld lattice used is depicted in Figure 1b. The

relaxation timet m allows us to set the magnetic resistivity ash = Qt m, independently from the

�uid's viscosity, which is related tot .

The �rst moment ofg gives the electric tensor as

L (0)
ab =

M

å
j= 0

X ja g(0)
jb = ua Bb � Ba ub : (5)

Note that consistent expressions forÑ� B andÑ� B can be obtained [3]. Finally, the incorpora-

tion of the Lorenz force can be implemented in two ways either by an appropriate expansion of

the f (0) [3] or by adding a forcing term in the Boltzmann equation [2].

Toroidal implementation

Applying the methodology in toroidal �elds poses certain dif�culties. Note that Eq.( 1) is for-

mulated in terms of a cartesian system. The primary reason for this being the constrains imposed

on the discrete lattice in terms of isotropy and galilean invariance. In cartesian con�guration the

torus obeys the equation

a2 = ( R0 �
p

x2 + y2)2 + z2 (6)






