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Abstract

An approach to integrate transport equations with fluxesgoedmplex non-linear func-
tions of physical parameters and their gradients, as itddipted by theoretical models for
micro-instabilities in plasma, is proposed. This approapérates without any splitting of
the flux on diffusive and convective components normallyoimed in transport calcula-

tions.

Introduction

By considering transport processes in fusion plasma it iveational to speak about such
characteristics as particle and heat diffusivities, atlwacselocity etc. This approach is origi-
nated in the traditional view on the mass and heat transfeaased by collisions of individual
particles. In toroidal fusion plasmas such a situation iscdbed by the neoclassical theory.
However, diverse micro-instabilities, developing in thgdasmas, lead to turbulence, tremen-
dously enhancing mass and heat transfer [1]. The resultiomalous fluxes are complex non-
linear functions of the parameter spatial gradients. Bymating profiles of the plasma parame-
ters, these fluxes are normally splitted on diffusive andieotive contributions in order to apply
well developed approaches for numerical integration osdmond order differential equations.
Such a separation serves also as an approximate tool foprietation of experimental data
in customary concepts of diffusion and advection. Howethere is not any definitive answer
to the question: are the individual transport coefficiebtsth reconstructed from experimen-
tal measurements under usually ambiguous assumptions tileaime and spatial behavior of
these characteristics and obtained by a splitting of thimaily predicted fluxes, unique? There-
fore, development of direct methods for integration of $i@ort equations without flux splitting
on diffusive and convective contributions would be verypfel in order to clarify this situation
and to offer a firm basis for the prediction of parameter pesfih future devices. In the present
contribution such an approach is elaborated and demoediatthe example of the well known
Weiland transport model [1] for the charged particle flux.
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Basic equations
Time evolution of the plasma densityis governed by the continuity equation averaged over

the magnetic surfaces:

on  19(rry)

ot r or
whererl; is the density of the charged patrticle flux in the radial dicetr andSis the density

=S (1)

of the plasma source due to ionization of neutral partickeslpced by recycling and neutral
beams. The transport model giviesas a non-linear function af, d,n and other parameters
pj: [r =T (n,0n, p;j). In this studyp; are assumed as known functionsrofifter replacing
on/ot with (n—n_) /1, wheren=n(t,r), n_ =n(t—rt,r) andrt is a small enough time step,
Eqg.(1) is multiplied byr and integrated from = 0 with the symmetry conditiof, (r =0) =0
taken into account. As a result one gets:

r=®(r) (2)

(1) = %/(s_ ”‘T”-) rdr 3)

With the known density profile at the previous time moment(r), and some approximation

with

for n(r), one can comput@ (r). The calculation of the next approximationndr) is started
at the last closed magnetic surface (LCMS); a, where thee-folding lengthd is prescribed:

orn=—n/d. Therefore, Eq.(2) provides a non-linear algebraic equdbrn(a):

Mr[n(@),-n(@)/3, pj ()] = > () 4)

In order to determine the density at- h, whereh is the spatial grid increment, the density
gradient aa— his estimated ag(a) —n(a— h)] /h. As a result, Eq.(2) provides the following
equation fom(a— h):

I [n(@a—h),(n(@—n(@a—h))/h, pj@a-h)] =@-h) (5)

Whenn(a—h) has been found, this procedure is continued to the plasnsa jsaviding a
new approximation for the density profileew(r). The new approximation t® is calculated
according to the relation:

Prew= (1 — Amix) P + Amix® (Mnew)

where® (nneyw) is determined from Eq.(3) with(r) = npew(r) and Amix < 1 is a relaxation

factor whose maximum level is restricted by the convergerficalculations.
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Figure 1: Particle flux density versus the parameter 4 R/2L,, computed with the Weiland
transport model [1] for TEXTOR parameters [2].

Example of application

In order to demonstrate the approach proposed, we appliotttie continuity equation with
the particle flux ', given by the Weiland transport model, see Eqs.(5.181)88,15.188) and
(5.191) in Ref.[1]. In order to describe the case with a pesitlensity gradient, which may
be realized, e.g., on the density ramp stage, this modelténexy assuming, (d.-n > 0) =
—Dg0dyn with Dg = 0.1rr12/s henceforth. Figure 1 displayg versus the parameter= —%%
computed for the conditions of the plasma interior in theatolkk TEXTOR [2]:R = 1.75m,
r=0.3m Br =225T,q=2,5s=1,n=4x 103, T =500V, Lt = 0.3m. The fact that
'y can be directed towards the plasma axis even for a negatiatgeradient is normally
interpreted as an inward particle pinch.

For®(r) > 0 the equality (2) is possible at a singland, thus, an uniqueg(r) can be found.
For I™Mn < @ (r) < 0 there are, however, three possibland we select the one which corre-
sponds tan(r) being the closest to(r +h). An unique solution exists again fdr(r) < rmn
Since at the LCMSy = a, I, is always positiveg (a), n(a) and, thus, the total density pro-
file are defined uniquely. At the positions whebgr) = 0 or ®(r) = '™" the density gradient
undergoes a sharp change between | and IIl branches of; {fz¢ curve. The gradient values
corresponding to the unstable branch Il can not be realiz¢lda framework of the transport
model applyied.

The particle source contribution from the neutral beamihgas determined by the beam

powerh,, the energy of injected particl€s,, and the shape of the power deposition. The latter
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Figure 2: Radial profiles of the adopted plasma temperagafety factor (a), initial density and

found in computation steady state plasma density(b).

is assumed as a Gaussian one with the half-wigltihe recycling source is determined by the
neutral density computed in a diffusive approximation [8jthe LCMS a certain probability
Rrec for neutrals to recycle back into the plasma after recontlminaf ions and electrons on
the wall is assumed. Computation have been performed farEXI OR parameters above and
R, = 1.5MW, E, = 50keV, rp = 0.3m, a= 0.46m, Rec = 0.98, , = 0.1m. Figure 2a displays the
adopted radial profiles of the plasma temperaiyrassumed the same for electrons and ions,
and of the safety factay. Figure 2b shows the assumed initial plasma density praofites= 0),

and that found in computations for the steady stafe—= «). Although any comparison with
the experiment is out the scope of this contribution, thietadrofile is in a good agreement with

the one found under conditions of the radiation improved en@d

Conclusion
An approach to integrate continuity equation with fluxegdicted by theoretical transport
models and being complex non-linear functions of paranggtsttients, is proposed. Computa-

tions performed with the Weiland transport model show stabhvergence of iterations.
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