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Abstract

An approach to integrate transport equations with fluxes being complex non-linear func-

tions of physical parameters and their gradients, as it is predicted by theoretical models for

micro-instabilities in plasma, is proposed. This approachoperates without any splitting of

the flux on diffusive and convective components normally involved in transport calcula-

tions.

Introduction

By considering transport processes in fusion plasma it is conventional to speak about such

characteristics as particle and heat diffusivities, advection velocity etc. This approach is origi-

nated in the traditional view on the mass and heat transfer ascaused by collisions of individual

particles. In toroidal fusion plasmas such a situation is described by the neoclassical theory.

However, diverse micro-instabilities, developing in these plasmas, lead to turbulence, tremen-

dously enhancing mass and heat transfer [1]. The resulting anomalous fluxes are complex non-

linear functions of the parameter spatial gradients. By computing profiles of the plasma parame-

ters, these fluxes are normally splitted on diffusive and convective contributions in order to apply

well developed approaches for numerical integration of thesecond order differential equations.

Such a separation serves also as an approximate tool for interpretation of experimental data

in customary concepts of diffusion and advection. However,there is not any definitive answer

to the question: are the individual transport coefficients,both reconstructed from experimen-

tal measurements under usually ambiguous assumptions about the time and spatial behavior of

these characteristics and obtained by a splitting of theoretically predicted fluxes, unique? There-

fore, development of direct methods for integration of transport equations without flux splitting

on diffusive and convective contributions would be very helpful in order to clarify this situation

and to offer a firm basis for the prediction of parameter profiles in future devices. In the present

contribution such an approach is elaborated and demonstrated on the example of the well known

Weiland transport model [1] for the charged particle flux.
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Basic equations

Time evolution of the plasma densityn is governed by the continuity equation averaged over

the magnetic surfaces:

∂n
∂ t

+
1
r

∂ (rΓr)

∂ r
= S (1)

whereΓr is the density of the charged particle flux in the radial direction r andS is the density

of the plasma source due to ionization of neutral particles produced by recycling and neutral

beams. The transport model givesΓr as a non-linear function ofn, ∂rn and other parameters

p j : Γr = Γr
(

n,∂rn, p j
)

. In this studyp j are assumed as known functions ofr. After replacing

∂n/∂ t with (n−n−)/τ , wheren = n(t, r) , n− = n(t − τ , r) andτ is a small enough time step,

Eq.(1) is multiplied byr and integrated fromr = 0 with the symmetry conditionΓr (r = 0) = 0

taken into account. As a result one gets:

Γr = Φ(r) (2)

with

Φ(r) ≡
1
r

r
∫

0

(

S−
n−n−

τ

)

rdr (3)

With the known density profile at the previous time moment,n− (r), and some approximation

for n(r), one can computeΦ(r). The calculation of the next approximation ton(r) is started

at the last closed magnetic surface (LCMS),r = a, where thee-folding lengthδ is prescribed:

∂rn = −n/δ. Therefore, Eq.(2) provides a non-linear algebraic equation forn(a):

Γr
[

n(a) ,−n(a)/δ, p j (a)
]

= Φ(a) (4)

In order to determine the density ata− h, whereh is the spatial grid increment, the density

gradient ata−h is estimated as[n(a)−n(a−h)]/h. As a result, Eq.(2) provides the following

equation forn(a−h):

Γr
[

n(a−h) ,(n(a)−n(a−h))/h, p j (a−h)
]

= Φ(a−h) (5)

When n(a−h) has been found, this procedure is continued to the plasma axis, providing a

new approximation for the density profile,nnew(r). The new approximation toΦ is calculated

according to the relation:

Φnew= (1−Amix)Φ+AmixΦ(nnew)

whereΦ(nnew) is determined from Eq.(3) withn(r) ≡ nnew(r) andAmix ≤ 1 is a relaxation

factor whose maximum level is restricted by the convergenceof calculations.
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Figure 1: Particle flux density versus the parameter 1/ε = R/2Ln computed with the Weiland

transport model [1] for TEXTOR parameters [2].

Example of application

In order to demonstrate the approach proposed, we apply thisto the continuity equation with

the particle fluxΓr given by the Weiland transport model, see Eqs.(5.181), (5.182), (5.188) and

(5.191) in Ref.[1]. In order to describe the case with a positive density gradient, which may

be realized, e.g., on the density ramp stage, this model is extend by assumingΓr (∂rn > 0) =

−D0∂rn with D0 = 0.1m2/s henceforth. Figure 1 displaysΓr versus the parameterε = −
2
R

n
∂rn

computed for the conditions of the plasma interior in the tokamak TEXTOR [2]:R= 1.75m,

r = 0.3m, BT = 2.25T, q = 2,s= 1, n = 4×1019m−3, T = 500eV, LT = 0.3m. The fact that

Γr can be directed towards the plasma axis even for a negative density gradient is normally

interpreted as an inward particle pinch.

ForΦ(r) > 0 the equality (2) is possible at a singleε and, thus, an uniquen(r) can be found.

For Γmin
r ≤ Φ(r) ≤ 0 there are, however, three possibleε and we select the one which corre-

sponds ton(r) being the closest ton(r +h). An unique solution exists again forΦ(r) < Γmin
r .

Since at the LCMS,r = a, Γr is always positive,ε (a), n(a) and, thus, the total density pro-

file are defined uniquely. At the positions whereΦ(r) = 0 or Φ(r) = Γmin
r the density gradient

undergoes a sharp change between I and III branches of theΓr (ε) curve. The gradient values

corresponding to the unstable branch II can not be realized in the framework of the transport

model applyied.

The particle source contribution from the neutral beam heating is determined by the beam

powerPb, the energy of injected particlesEb, and the shape of the power deposition. The latter
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Figure 2: Radial profiles of the adopted plasma temperature,safety factor (a), initial density and

found in computation steady state plasma density(b).

is assumed as a Gaussian one with the half-widthrb. The recycling source is determined by the

neutral density computed in a diffusive approximation [3].At the LCMS a certain probability

Rrec for neutrals to recycle back into the plasma after recombination of ions and electrons on

the wall is assumed. Computation have been performed for theTEXTOR parameters above and

Pb = 1.5MW, Eb = 50keV, rb = 0.3m, a= 0.46m, Rrec = 0.98,δn = 0.1m. Figure 2a displays the

adopted radial profiles of the plasma temperatureT, assumed the same for electrons and ions,

and of the safety factorq. Figure 2b shows the assumed initial plasma density profile,n(t = 0),

and that found in computations for the steady state,n(t = ∞). Although any comparison with

the experiment is out the scope of this contribution, the latter profile is in a good agreement with

the one found under conditions of the radiation improved mode [2]

Conclusion

An approach to integrate continuity equation with fluxes, predicted by theoretical transport

models and being complex non-linear functions of parametergradients, is proposed. Computa-

tions performed with the Weiland transport model show stable convergence of iterations.
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