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Introduction 

It is found experimentally that internal transport barriers 

(ITBs) generally form in regions of low or even 

negative shear. The program ELITE
2
 was originally 

written to study edge localised modes (ELMs). 

However, with increasing interest in ITBs and the 

related advanced modes of operation, it was decided to 

modify the code to look at ballooning instabilities 

centred on ITBs. The new version of the code has been 

successfully benchmarked against the MISHKA
3
 

stability code. Fig (1) shows the result from studying an 

unstable ITB equilibrium in a JET like tokamak. 

Ballooning theory suggests two important parameters  

and shear (s) map out three regions. These parameters 

are defined as: 
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02µα −= , where r is 

the minor radius, q is the tokamak “safety factor”, B is 

the magnetic field and p is the plasma pressure. The 

first stability region is bounded by a line of increasing  

and s, where increasing  is destabilising but increasing 

s is stabilising. This is the normal operating regime for most tokamak equilibria. There is 

also the possibility for a second stability region of low s and high . The FAREQ
6
 code 

allows the specification of an analytic q-profile, and was used to generate the initial 

equilibrium. A number of JET-like tokamak equilibria were generated.  was varied by 

changing the peak gradient in the pressure profile. In order to maintain constant q-profiles it 

was not possible to hold  constant. The magnetic shear was varied by  

 

Fig 1. Poloidal cross section of 

a ballooning mode instability.  

Areas of intense blue or yellow 

indicate the largest 

displacements. 
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Fig 2. An illustration of how the q-profile was modified in each case. By Adding a guassian 

to smooth the profile, the shear profile is modified. For a given flux surface the shear can 

thus be controlled when looking for unstable equilibria. 

 

adding a Gaussian function to the q-profile of varying heights as shown in fig 2. FAREQ 

output is used as input to the HELENA
5
 equilibrium code, which in turn performs an 

analysis of ballooning stability based on infinite toroidal mode number (n) calculations, 

with the domain of instability maximised over the radial wave number ( 0)
7
. From there the 

ballooning stability for a given n  

can be calculated in ELITE. Each 

equilibrium was calculated with 

varying shear and  at a given flux 

surface. For simplicity the values of 

 and s are shown at a fixed flux 

surface of n=0.55 in each case 

which is near the peak  value. 

Results 

As can be seen in fig 3, the infinite-

n ballooning calculations show a 

clear boundary between the first 

stability region and the unstable 

region, in line with analytic theory. 

However, there is little evidence of a second stability region at the lowest s attainable with 

 

Fig 3. Infinite n stability for a range of equilibria 

with different values for s and . purple is stable; 

black is unstable at  n=0.55 
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the particular class of equilibria used. After these equilibria had been generated, the 

stability of some of them was computed with the ELITE code, for n of 20, 15 and 25, 

shown in figs 4, 5 and 6 

respectively; the results are 

given as a contour plot 

showing the growth rates for 

different values of s and . 

The strong yellow colours 

indicate large growth rates. 

As expected, for any given 

value of s and  the growth 

rate is higher for higher n 

values.  As the value of n 

tends towards infinity it 

would be expected to recover 

the infinite-n limit shown in Fig 3.  Fig 4 shows the most extensive study; at low  a first 

stability boundary seems evident (the n=20 domain of instability is all within the inifinite-n 

unstable domain). There is no clear second stability behaviour (growth rate decreases as  

increases) but at low s very high  values are stable). Comparing Figs 4 and 5 between the 

values of n=15 and n=25 it can be seen that the region of instability is enlarged, and the 

boundary is shifted down.  Only the change between yellow and blue should be used to 

interpret the position of the stability boundary as black areas lack data points. 

  

Fig 5. Contour plot for n=15 Fig 6. Contour plot for n=25 

 

 

 

 

Fig 4. Contour plot showing ELITE growth rates at n=20. 

The colour bar indicates the initial growth normalised to 

the Alfvén time. 
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Conclusions 

The results suggest that the ITB equilibria are entering the second stability region, where 

the combination of high  and low s are stable to moderate n modes. The existence of ITBs 

is consistent with the fact that they are not unstable to low to mid-n ballooning modes – the 

most destructive modes.  In practice very high-n ballooning modes are likely to be 

stabilised by kinetic effects. It is not possible to form an ITB in a high s region because it 

would be ballooning unstable to low to moderate-n modes and would quickly disappear. 
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