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1 Introduction

Toroidal flows exceeding the local sound speed, and a pronounced variation of electron den-

sity on flux surfaces, have recently been observed in the MAST spherical tokamak (ST) during

counter-current neutral beam injection [1]. In order to determine the plasma equilibrium under

these circumstances it is not strictly appropriateto neglect inertial terms in the fluid momentum

balance or to use ideal magnetohydrodynamics (MHD). In this paper we demonstrate that equi-

libria representative of rapidly-rotating ST plasmas can be readily computed analytically and

numerically using simple two-fluid models.

2 General analysis

A dissipationless two-fluid model of axisymmetric equilibria with flows, first developed in [2],

has recently been applied to tokamak conditions [3],with electron inertia neglected and electron

temperatureTe (but not necessarily ion temperatureTi) assumed to be constant on flux surfaces.

It is well-known that plasma densityn and hence pressurep are not flux functions if the plasma

rotates toroidally [4]. Takingp to be a function of poloidal fluxΨ andR2, whereR is major

radius, the two-fluid Grad-Shafranov equationfor a tokamak plasma with arbitrary toroidal

flow and zero poloidal flow can be written in a form closely analogous to the familiar MHD

version [3]:
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whereZ is vertical distance andf = RBϕ , Bϕ being toroidal field. IfTi is assumed to be a flux

function, the following expression for the ion toroidal rotation velocity can be obtained [3]:
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wheremi is ion mass,A is a flux function determined bythe temperature profiles andd is a

constant. The pressurep and electrostatic potentialΦ are then given by
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whereP1, Φ∗ are flux functions and−e is electron charge.
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3 Rigid body rotation

In the limit |d| ≫ R2 we obtain from Eqs. (2) and (3) an expression for the variation of pressure

on rigidly-rotating flux surfaces:

p = P2(Ψ)exp

[

miΩ
2
ϕ iR

2

2(Ti +Te)

]

, (5)

whereP2 = P1exp[−A(Ψ)2/d] andΩϕ i in this limit is a flux function. Equation (5) can also be

obtained using ideal MHD when the single fluid temperatureT = (Ti +Te)/2 is a flux function

and poloidal flows are neglected [4]. WhenΩ2
ϕ i/(Te+ Ti) is independent ofΨ andP2 ∝ −Ψ,

Eq. (1) has a particular integral [4]
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whereMϕ = Ωϕ iR1m1/2
i /(Ti + Te)

1/2 is the sonic Mach number of the toroidal flow at major

radiusR= R1. TakingRBϕ to be constant, so thatf f ′ = 0, we can incorporate this particular

integral into a solution of Eq. (1) which reduces in the limitMϕ → 0 to an expression obtained

by Freidberg [5] (following Solev’ev [6]):
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(7)

HereR0, Rb andγ are constants that, together withMϕ andR1, determine the plasma major

radius, midplane minor radius and elongation (Ψ = 0 at the plasma boundary), andΨ1 is a

constant that determines the total plasma current.

Fig 1(a) shows MAST-like flux surface contours computed using Eq. (7) forMϕ = 0 (blue

curves) andMϕ = 1, R1 = 0.9m (red curves). The other parameters in Eq. (7) were chosen such

that the inner and outer midplane plasma boundaries, and the plasma elongations, coincided

in the two cases. The toroidal flow has caused an additional outboard shift of about 5cm in

the magnetic axis. Fig 1(b) shows the midplane density profile forMϕ = 1 whenTe + Ti is

assumed to be constant; the dashed line indicates the location of the magnetic axis. Although

the assumption of constant temperature is clearly an approximation, MAST discharges with

supersonic flows have been observed to have relatively broad temperature profiles [1]. Fig 1(b)

shows the inboard-outboard density asymmetry associated with toroidal rotation [4]. In this

particular scenario the outboard shift of thedensity peak relative to the magnetic axis (≃ 10cm)

is of the same order as the shift in the axis itself (≃ 5cm), suggesting that both effects should in

general be taken into account when interpreting data from discharges with transonic flows.
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Figure 1: (a) MAST-like equilibria with no toroidal flow (blue curves) and transonic (Mϕ = 1)

rigid body toroidal flow (red curves). (b) Midplane density profile forMϕ = 1.

4 Keplerian rotation

The ion momentum balance equation admits solutions for the flow such that the toroidal canon-

ical momentumPϕ i ≡ miΩϕ iR2+eΨ is a function ofΨ, i.e. the ion fluid on a given flux surface

rotates in a Keplerian manner, with constant angular momentum [3]. This corresponds tod → 0

in Eq. (2). The pressure and hence density variation on a flux surface is then qualitatively similar

to that of rigid body rotation, insofar as the peak occurs outboard of the magnetic axis, but the

dependence onR is of the form exp(−A2/R2) rather than that given by Eq. (5). Due to the large

range of values ofR in ST geometry, the density variation on a flux surface far from the axis is

significant even for relatively modest values ofMϕ when the rotation is either rigid or Keplerian.

Combined measurements of density, temperature and ion toroidal velocity could in principle be

used to establish which of these two limiting cases represents a better approximation.

TakingA to be constant,d = 0, P1 ∝ −Ψ and f f ′ = 0, Eq. (1) reduces to
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whereC is a constant and, as before,Mϕ is the sonic Mach number atR= R1. It is possible

to obtain a particular integral of Eq. (8) in terms of infinite series, which are, however, rather

slow to converge. For this reason we have used a simple finite difference scheme to solve Eq.

(8) numerically, with a bounding flux surface passing through a set of six fixed points corre-

sponding to the last closed flux surface of a MAST-like plasma, and a range of toroidal Mach

numbers (Fig. 2). As in the case of rigid rotation, the magnetic axisRm moves outboard asMϕ

is increased, in this case by about 4cm forMϕ = 1. Similar results were obtained when Eq. (1)
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was solved for the case of Keplerian rotation with a modified (quadratic)Ψ dependence in the

pressure profile and a slightly different choice of points on the plasma boundary.
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Figure 2: Equilibria with Keplerian rotation. The Mach numberMϕ is evaluated atR= 0.85m.

5 Discussion

Equation (2) represents a two-fluid generalisation of the ideal MHD result that flux surfaces

rotate as rigid bodies in the absence of poloidal flows [4]. Even in the rigid body limit Eq. (2)

augments MHD by providing a specific relation between the rotation profile and the temper-

ature profiles: in MHD the profiles can be prescribed independently. It may be expected that

real tokamak plasmas will generally lie between the two extremes of rigid body and Keplerian

rotation considered in Secs. 3 and 4 above. Although in our two-fluid model the density on a

flux surface always increases from inboard to outboard, the precise variation withR, and also

the equilibrium magnetic field, depend on whether the rotation profile is closer to the rigid body

or Keplerian limits. For these reasons it is important to take full account of rotation profile

measurements, if available, when reconstructing ST plasma equilibria with flows.
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