Self-similar solutions of unsteady ablation flow

C. Boudesocque-Dubois, S. Gauthier, J.-M. Clarisse, V. Lombard

1 Commissariat à l’Énergie Atomique, Bruyères le Châtel, France

The stability of ablative flows is of importance in inertial confinement fusion (ICF). Here we exhibit a family of exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases. Such self-similar solutions arise for particular but realistic time-increasing boundary pressure and heat flux laws, and are representative of the early stage of an ICF capsule irradiation, where a shock-wave front propagates upstream of an ablation front. Linear stability analyses of such time dependent solutions are performed by solving an initial and boundary value problem for linear perturbations [5]. Our goal here is to study these self-similar ablation flows, which are computed using a highly accurate numerical method, namely a dynamical multidomain Chebyshev spectral method [4, 7].

Self-similar mean flow

For one-dimensional motions in the x-direction of an inviscid heat-conducting fluid, obeying a perfect gas equation of state

\[p = \rho RT, \quad \epsilon = TR/(\gamma - 1), \]

(1)

where \(\rho \) is the fluid density, \(p \) the fluid pressure, \(\epsilon \) the internal energy, \(T \) the fluid temperature, \(R \) the gas constant and \(\gamma \) the fluid adiabatic exponent, the equations of motion, written in Lagrangian form, are

\[
\begin{align*}
\partial_t (1/\rho) - \partial_m v_x &= 0, \\
\partial_t v_x + \partial_m p &= 0, \\
\partial_t (v_x^2/2 + \epsilon) + \partial_m (pv_x + \phi_x) &= 0,
\end{align*}
\]

(2)

where \(m \) is the Lagrangian coordinate (\(dm = \rho dx \)), \(v_x \) the velocity and \(\phi_x \) the heat flux, of expression

\[\phi_x = -\kappa \partial_x T = -\kappa \rho \partial_m T = -\chi \left(\frac{\rho}{\rho_i} \right)^{-\mu} \left(\frac{T}{T_*} \right)^\nu \rho \partial_m T, \]

(3)

and \(\chi, \mu, \nu \) are fluid constants to be chosen such that \(\chi \geq 0, \mu \geq 0 \) and \(\nu \neq 1 \), \(\rho_i \) and \(T_* \) are characteristic density and temperature of the flow.

Solutions of self-similar type for system (2) have been investigated by several authors [8, 1, 3, 11, 12]. Here we consider time-dependent pressure and heat-flux boundary conditions [10]. At \(t = 0 \), the fluid of uniform density \(\rho_i \) is assumed to occupy the half-space \(m \geq 0 \), while a heat flux starts being applied along the plane \(m = 0 \). By choosing initial conditions to be

\[\rho = \rho_i, \quad v_x = 0, \quad T = 0, \quad \text{for } m \geq 0, \]

(4)
and boundary conditions of the form
\[p = p_\ast \left(\frac{t}{t_\ast}\right)^{2(\alpha - 1)}, \quad \varphi_x = \varphi_\ast \left(\frac{t}{t_\ast}\right)^{3(\alpha - 1)}, \quad \text{for } m = 0, \] (5)

system (2) admits a self-similar formulation. Here \(p_\ast, \varphi_\ast \) and \(t_\ast \) are characteristic pressure, heat flux and time. For convenience, we choose a dimensionless formulation of the equations based on the quantities \(\rho_i, R, \chi, t_\ast \). Applying the \(\Pi \)-theorem \[2\], the seven parameters \(\rho_i, R, \gamma, \chi, t_\ast, p_\ast, \varphi_\ast \) lead us to retain the three dimensionless numbers:
\[\gamma, \quad B_p = p_\ast t_\ast R / \chi, \quad B_\varphi = \sqrt{\rho_i (t_\ast R / \chi)}^3. \] (6)

Henceforth, all the quantities are replaced by their dimensionless equivalents, while keeping the same notations. Introducing the self-similar variable \(\xi = m / t^\alpha \), with \(\alpha = (2\nu - 1) / (2\nu - 2) \), and time power-law dependencies for the physical variables
\[\begin{align*}
\rho &= G(\xi), \\
v_x &= t^{\alpha - 1} V(\xi), \\
T &= t^{2\alpha - 1} \Theta(\xi), \\
\varphi_x &= t^{3(\alpha - 1)} \Phi(\xi),
\end{align*} \] (7)

the dimensionless system obtained from Eqs. (1,2,3) reduces to a system of ODEs:
\[\frac{d}{d\xi} \begin{pmatrix} G \\ V \\ \Theta \\ \Phi \end{pmatrix} = \begin{pmatrix} G^2 N / D \\
\alpha \xi N / D \\
\alpha \xi F - 2(\alpha - 1) \Theta / (\gamma - 1) - \alpha \xi G \Theta N / D \end{pmatrix} \] (8)

with:
\[N = (\alpha - 1)V + GF, \quad D = \alpha^2 \xi^2 - G^2 \Theta, \quad F = -\Phi G^{\mu - 1} \Theta^{-\nu}. \] (9)

The corresponding dimensionless form of equations (4) and (5) are
\[G(\xi \to +\infty) = 1, \quad V(\xi \to +\infty) = 0, \quad \Theta(\xi \to +\infty) = 0, \]
\[(G \Theta)(\xi = 0) = B_p, \quad \Phi(\xi = 0) = B_{\varphi}. \] (10)

Any solution of (8) satisfying Eqs. (10,11) necessarily includes the singularity \(D = 0 \). This singularity corresponds to an isothermal characteristic curve, say \(m / t^\alpha = \xi_s \), of the \((m,t)\)-plane, which is circumvented by introducing, as part of the solution, an isothermal shock wave at \(\xi = \xi_s \). Henceforth the boundary conditions (10) are replaced by the Rankine-Hugoniot conditions, at \(\xi = \xi_s \), for a non-isothermal shock wave with uniform upstream state given by (10), thus defining, along with Eq. (11), a nonlinear eigenvalue problem for system (8).
The highly accurate numerical method we have devised [7] consists of a finite-difference shooting procedure followed by a relaxation process coupled to an adaptive multidomain Chebyshev spectral method [9]. This algorithm introduces two numerical parameters ξ_f and ξ_s (ξ_s represents the shock wave front, ξ_f is defined such that $[\xi_f, \xi_s]$ is the conduction-negligible region), adjusted by the shooting method to obtain the boundary value parameters B_p and B_ϕ.

Results

Similarity solutions depend on five dimensionless flow parameters (γ, μ, ν, B_p, B_ϕ), which characterize the material, non-linear conduction and external constraints (heat flux and pressure). Given a LMJ-configuration ablation flow [6], we obtain the five dimensionless parameters of a self-similar solution, which is then computed. Fig 1 represents reduced function profiles of density, velocity and temperature. One recognizes (i) the undisturbed fluid region ($\xi > \xi_s$), (ii) the ablation layer (steep density and temperature gradients), (iii) the quasi-isentropic compression region between the ablation layer and the shock-wave front, and (iv) the conduction-dominated region extending from the origin up to the ablation layer. Self-similar solutions for various values of the boundary value parameters B_p and B_ϕ, and of the fluid adiabatic exponent γ have been successfully computed (see Fig. 2 for $\gamma = 5/3$). Variations in laser intensity, fluid density and heat conductivity are accessible with Eq. (6) through proper choices of the boundary value parameters B_p and B_ϕ. The knowledge of the parameter variation domain allows us to define solutions that could be reached in experiments.

References

Figure 2: Reachable values of B_p and B_ϕ, for $\gamma = 5/3$ and $(\mu, \nu) = (0, 5/2)$. Symbol \oplus indicates an LMJ reference solution (see Fig. 1). Black lines correspond to $\xi_s = \text{cste}$, and blue lines to $\xi_f = \text{cste}$.

