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Abstract

New exact results are reported for relativistic acceleration of test positive ions in the

electric field of a planar plasma layer, whose electrons have initially been boosted to one

and the same velocityv0.

One of the important latest achievements in laser-plasma interaction has been a demonstration

of efficient proton acceleration by illumination of high-Z foils with ultra-intense laser pulses

[1, 2, 3]. Theoretical evaluation of the maximum energy of accelerated protons (or other test

particles, likeπ+ mesons for example) is usually based on a quasi-static Boltzmann relation for

the electron distribution — which, however, becomes inadequate for a sufficiently high energy

of laser-heated electrons. Then, of considerable help for gaining insight into the problem of ion

acceleration under such conditions may be the solution to the following problem.
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Figure 1: Plasma foil with motionless

bulk ions (hatched area) and electrons

(grey area) boosted to a velocityv0.

Consider a uniform plasma foil of thicknessl0

with an initial density of free electronsn0. At time

t = 0 all free electrons are set in motion with the

same initial velocityv0 perpendicular to the foil (see

Fig. 1). At later timest > 0 the motion of electrons,

treated as a collisionless charged fluid, is governed

by the electric fieldE(t,x) arising due to charge

separation in the evolving plasma cloud. Our goal

is to calculate the motion of a test ion of charge

+eZp and massmp placed initially at the foil sur-

facex = 0. The bulk foil ions are assumed to be in-

finitely heavy and staying at rest. Earlier this prob-

lem was addressed by Bulanovet al. [4]. Here the

results of Ref. [4] are partially corrected and significantly expanded.

It is easy to understand that there are three independent dimensionless parameters

µ =
meZp

mp
, Λ =

l0ω0

v0
√

γ0
, γ0 = (1−β 2

0 )−1/2, (1)
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which govern our problem; hereme is the electron mass,

ω0 =

(

4πe2n0

me

)1/2

(2)

is the initial plasma frequency,e is the positive elementary charge, andβ0 = v0/c.
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Figure 2: Electron trajectories in thetx-

plane forΛ = 0 andγ0 = 1.

Evolution of the expanding electron cloud is de-

termined by the values ofΛ andγ0. Analytical re-

sults are most readily obtained in the limit ofΛ≪ 1,

and then generalized toΛ >∼1. After some time the

electron cloud is divided into two zones: the inner

“relaxation” zone, where the trajectories of colli-

sionless electrons cross each other, and the outer

“laminar” zone, where the electron trajectories do

not intersect (see Fig. 2). The boundary between

the laminar and the relaxation zones grows linearly

in time: xrel = αrelv0t, with αrel = 0.25±0.02 for

Λ = 0 andγ0 = 1. Generally, the relaxation zone

shrinks with the increasingγ0, and expands with the

increasingΛ. Analytical analysis of the ion acceler-

ation is possible either in the laminar zone, or at the inner quasi-equilibrium core of the relax-

ation zone, where the Boltzmann relation can be used.

For Λ = 0, the electron trajectories in the upper laminar zone are given by

x̄e =
t̄(2−ξ t̄)

1+
√

1−β 2
0 ξ t̄(2−ξ t̄)

, (3)

where 0< ξ < 1 is the Lagrangian coordinate for the electron fluid, andt̄ and x̄ are time and

length normalized to new units[t] = mev0γ0/4πe2n0l0, [x] = v0[t]. Equation (3) yields the elec-

tric field in the laminar zone,

E(t̄, x̄) = 8πen0l0
t̄ − x̄

t̄2−β 2
0 x̄2

, (4)

and allows the equations of motion of the test ion to be cast in the form

dχ

dζ
=

coshχ

coshη
sinh(η −χ), (5)

dη

dζ
= 2µ

coshχ

coshη
sinh(η0−χ), (6)

whereζ = ln t̄, and the position of the test ion,xp(t) = ct tanhχ, and its velocity,vp(t) =

c tanhη , are expressed in terms of new “hyperbolic” variablesχ andη ; η0 is defined asβ0 =
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tanhη0. Since Eqs. (5) and (6) do not containζ explicitly, the key features of the ion motion

can be elucidated by investigating the integral curves of the phase equation

dη

dχ
= 2µ

sinh(η0−χ)

sinh(η −χ)
, (7)

and, in particular, the properties of its singular point atη = χ = η0.

For µ > 1
8 the singular pointη = χ = η0 is a focus, which means that test ions withµ > 1

8

inevitably overtake the electron front, represented by the valueχ = η0, and acquire the final

velocity vp∞ > v0. For µ < 1
8 the singular pointη = χ = η0 is a node with one direction of

general approach,η −η0 → 1
2 (1+

√
1−8µ)(χ −η0), and a solitary integral curve (separa-

trix), η − η0 → 1
2 (1−

√
1−8µ)(χ − η0), which separates two different regimes of test ion

acceleration. The boundaryµ = µcr(γ0) [or, alternatively,γ0 = γcr(µ), whereγcr(µ) is the in-

verse function ofµcr(γ)] in the µ−1,γ0 parametric plane between these two regimes is shown

in Fig. 3. WhenΛ �= 0, µcr generally depends onΛ as well.
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Figure 3: Different regimes of test ion ac-

celeration in theµ−1,γ0 parametric plane.

Only sufficiently light ions withµ > µcr(γ0) [or

when γ0 > γcr(µ)] can catch up with the electron

front and reach the final velocityvp∞ > v0. In the

non-relativistic limitγ0 → 1 we haveµcr = 1
8 (for

Λ = 0). In the opposite ultra-relativistic limit, when

γcr(µ)≫ 1 andµcr(γ0)≪ 1, one derives the follow-

ing asymptotic expression

γcr(µ) =
1
2

µ exp(µ−1−1). (8)

Note that for protons withµ = 1/1836 the cor-

responding value ofγcr = 2.3× 10793 is far be-

yond any realistic value. For the final energyEp∞ =

mpc2γp∞ of ions withµcr(γ0) < µ ≪ 1, which overtake the electron front and haveγp∞ > γ0, we

derive an asymptotic formula

γp∞ = µγ0

(

1+ ln
2γ0

µ

)

, (9)

which differs significantly from the corresponding valueγp∞ = 2γ2
0 given by Eq. (35) in Ref. [4].

If, however,µ < µcr (or γ0 < γcr), a test ion in the laminar zone approaches the electron

velocity v0 only asymptotically, in the limit oft → ∞, but on an enormously long time scale of

tac ≈ ω−1
0 exp(1/2µ) for µ ≪ 1. The latter means that in reality protons (and similar test ions)

never reach the limiting electron velocityv0, and their energyEp = mpc2γp at a realistic time of
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observationt can be evaluated by using the following intermediate asymptotical expression

βpγp

β0γ0
= µ ln

tω0√
γ0

{

1+

[

1+(γ0 +β0γ0−1)µ ln
tω0√

γ0

]−1
}

, (10)

which one derives from Eq. (6) forµ ≪ 1 andω−1
0

√
γ0 ≪ t ≪ ω−1

0
√

γ0 exp
[

(2µ)−1
]

.

Although the functionµcr(Λ,γ0) is most easily calculated forΛ = 0, in practical situations

one usually hasΛ > 1 (for example, 1µm of solid gold ionized toz = 50 with γ0 = 100 corre-

sponds toΛ = 10). One can prove that the entire process of test ion acceleration and the values

of µcr(Λ,γ0) cease to depend onΛ for Λ > Λvg =
√

2γ0/(γ0 +1) ≤
√

2, when no vacuum gap

is formed between the ejected electrons and the motionless foil ions. Numerical solution of the

test ion equations of motion reveals that the two opposite extremesµcr(0,γ0) andµcr(
√

2,γ0)

never differ by more than 6%, i.e. the dependence ofµcr(Λ,γ0) onΛ would be hardly noticeable

in Fig. 3 and can be ignored. Note that Eq. (10) applies to the case ofΛ > Λvg.

Strictly speaking, our analysis applies to situations where the trajectory of a test ion lies

entirely in the laminar zone. This is the case when the parameterµ is sufficiently large, i.e. for

µ ≥ µlam(Λ,γ0). To calculate the valuesµlam(Λ,γ0), one has to simulate the evolution of the

electron cloud with a full account of interpenetration of different elements of the collisionless

electron fluid. The results of such calculations are shown in Fig. 3 as two extreme positions

of the µlam(Λ,γ0) curve in theµ−1,γ0 parametric plane, obtained respectively forΛ = 0 and

for Λ > 3. It is seen that there is a relatively wide window in the parameter space where our

results for ion acceleration in the laminar zone do indeed apply, especially for highly relativistic

electrons withγ0 ≫ 1. For protons withµ = 1/1836 this window opens atγ0 > 348 forΛ ≪ 1,

and atγ0 > 537 forΛ > 3.

In a non-relativistic electron cloud withβ0 ≪ 1, only very light ions withµ > 0.0745 are

accelerated entirely within the laminar zone atΛ = 0, and the laminar zone disappears at all for

Λ > 5.45. As it can be inferred from Fig. 3, acceleration of protons in a non-relativistic electron

cloud takes place deeply inside the relaxation zone, where one can expect the usual Boltzmann

relation to be a good approximation.
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