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Equilibrium and ballooning stability of resistive plasmas for given density, temperature and
z-effective profiles is considered. Pressure and resistivity profiles are determined by an equation
of state and a neoclassical description of parallel resistivity, respectively. The poloidal current
distribution is obtained by solving the equilibrium problem taking into account Ohm’s law.
Obtaining in this way a diffusing plasma, the equilibria are characterized by the appearence of
electric fields and of flow. These as well as ballooning stability are discussed in connection with
profiles showing a pedestal-like structure near the separatrix.

1. Introduction

In previous work [1] the ballooning stability of tokamak divertor equilibria with steep pressure
gradients in the immediate neighbourhood of the separatrix was studied. It was found that the
ideal-ballooning stability boundaries as well as the growth rates of the corresponding resistive
modes depend, besides on the chosen pressure profiles, in a sensible way on the poloidal current
distribution. In the investigation [2] on ideal ballooning modes using a local equilibrium model
a distribution was chosen which corresponds to high plasma resistivity near the separatrix. Here
we extend this approach to global tokamak equilibria with non-zero edge current densities.

More generally, in discussing the physical reasons for a particular form of the poloidal
current profile it is observed that potential contributions such as bootstrap [3] or quasi-stationary
currents coming from an Ohmic transformer [4]. appear in the form of the flux-surface average
〈 j·B 〉, so that a corresponding reformulation and solution of the equilibrium problem becomes
necessary.

2. Theory

The equilibrium partial differential equation with the current density written in its standard form
is

R2div
∇Ψ

R2
= −2πµ0RjT, jT ≡

µ0

4πR

dJ2

dΨ
+ 2πR

dp

dΨ
(1)

We consider separatrix-defined solutions of this equation for given plasma current Ip controlled
by a vacuum magnetic field part of Ψ so that the magnetic axis is at a fixed position. We use the
notations I = I(V) for the toroidal current, where V is the volume of a magnetic surface, and
re-write the current density by replacing the term containing the dJ2/dΨ by the flux-surface
average of the parallel current j·B/(µ0J)

jT = 2πR

{
N(R)FB

〈 j·B 〉
µ0J

+ (1− N(R)FB)
dp

dΨ

}
(2)

where the dimensionless quantities FB and N are given by

FB(I, J) =
〈B2

T 〉
〈B2 〉 =

{
1 + LR

I2

J2

}−1

, N(R) =
〈 1/R2 〉−1

R2
(3)



and LR is a geometric inductance coefficient

LR ≡
16π4

〈 1/R2 〉〈 |∇V|2/R2 〉 (4)

I and J – for given functions 〈 j·B 〉/(µ0J) and dp/dΨ – must be determined solving the
two-point nonlinear boundary value problem

dI

dV
= FB(I, J)

Cs〈 j·B 〉
µ0J

+ (1− FB(I, J))
dp

dΨ
(5)

1

2

dJ2

dV
= LRIFB(I, J)

{
−Cs〈 j·B 〉

µ0J
+

dp

dΨ

}
(6)

together with (1). Equation (5) describes equilibrium on average. (6) is the differential relation
connecting 〈 j·B 〉 and dJ2/dΨ. Both in (5) and (6) a scaling factor Cs is necessary which must
be determined so that the conditions I = 0 on axis and I = Ip and J = JB at the separatrix are
satisfied. This is achieved by adding a third equation dCs/dV = 0 leading to three equations
for I, J and Cs with the correct number of boundary conditions. Note the similarity between
(2) and (5). 〈 j·B 〉/(µ0J) (which on axis is jT/2πR) and dp/dΨ have the common dimension
[A/m3].

3. Calculations

Fig. 1 shows profiles 〈 j·B 〉 which apply for temperature, density and z-effective distributions
of an ASDEX Upgrade equilibrium resulting in the pressure and pressure gradient distributions
of Fig. 2(a). Except the axis and boundary regions, where 〈 j·B 〉BS vanishes, they are similar
in form.

Here we present calculations for equilibrium and
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Fig. 1: 〈 j·B 〉 normalized by its
maximum vs. normalized flux.

ballooning stability which have been done using the
〈 j·B 〉/(µ0J)-term valid for a resistive plasma which is
obtained from the parallel component of Ohm’s law and
where Cs can be identified with the loop voltage U:

〈 j·B 〉RP

µ0J
=

U〈 1/R2 〉
4π2η‖

(7)

〈 j·B 〉RP shows a pedestal-like structure near the separa-
trix inherited from the Te−profile and has a close rela-
tionship to the rotational transform ι = 1/q as

d(ι/LR)

dV
=

U〈 1/R2 〉
4π2η‖J

(8)

Even in cases where due to the persistence of inductive effects (7) might be not a good description
of the plasma core, (8) can serve as a convenient aid for q-profile shaping by suitably modifiying
η‖. In this way always a uniform and continuous profiling from axis to boundary for the purpose
of equilibrium calculations is possible.
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Fig. 2: (a) Edge pressure and pressure gradient distributions along a straight line leading from the
magnetic axis to the outer side of the separatrix. (b) The currents I and J as obtained as solutions of
equations (5,6).

Solving equation (6) makes the electric potential ϕs in the parallel component of Ohm’s
law single-valued. This can be seen by flux-surface averaging

B·∇ϕs = −µ0J

{
η‖

(
1− B2

〈B2 〉

)
dp

dΨ
+

U

µ2
0J2

(
B2

p − 〈B2
p 〉

B2

〈B2 〉

)}
(9)

Note that at plasma boundary ∂ϕs/∂s (s being the arc length along the separatrix) has a
pole at the x-point, whereas ϕs is smooth and finite there. Due to the term scaling as
∂ϕs/∂s ∝ η‖(BT/B2

p)(dp/dr) steep edge gradients of the pressure cause sheared electric fields
near the separatrix (Fig. 3(c)). Moreover, the presence of the electric potential ϕs implies flow
perpendicular to B

v⊥ =
1

B2

{
B×∇ϕs +

(
U

4π2R2
+ η⊥

dp

dΨ

)
∇Ψ

}
(10)

and, due to mass conservation, also parallel to B:

B·∇(v‖/B) = −1

ρ
div

{
ρ

B2

{
∇ϕs×B−

(
U

4π2R2
+ η⊥

dp

dΨ

)
∇Ψ

}}
− QM

ρ
(11)

The most general flow caused and allowed by the equations is then

v = vs + Ss(Ψ)B + Ωs(Ψ)R2∇ϕ (12)

vs is the special solution obtained from above with ϕs = v‖ = 0 on some reference line leading
from the magnetic axis to the plasma boundary and Ss and Ωs are free functions.

4. Results on Ballooning Stability

Stability against ideal ballooning modes is determined by the solution of the corresponding
Sturm-Liouville problem:

d

dθ

(
P

dU

dθ

)
+ QU = 0 (13)

P =
B·∇θ(1 + S2)

|∇Ψ|2 , Q = −2µ0(κn − Sκg)

B·∇θ|∇Ψ| Ps
dp

dΨ
, S =

|∇Ψ|2
B

[
dq

dΨ

θ

2π
− PsTp

]θ
θLP

(14)
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Fig. 3: Equilibrium (α, s)-values on flux surfaces tested for ballooning stability. (a) for moderate, (b) for
steep plasma pressure edge pedestals. (c): Contours of constant electric potential ϕs

The evaluation of S refers to the point under consideration (θ) and the localization point
poloidal angle θ = θLP. Tp is a periodic function describing diamagnetic effects and effects of
elongation and triangularity. Ps in (14) is an arbitrary scaling factor for showing up expected
pressure gradient and second stability effects without calculating new equilibria. The high-n
stability of the calculated equilibria was tested with the Garching ballooning code GARBO.
The mode localization points were positioned on the straight line of length rs leading from the
magnetic axis to the outer side of the separatrix. The results are presented in Figs. 3 (a) and
(b) as circles labeled by the corresponding normalized flux value X ∈ (0, 1). For orientation
also the stability boundaries valid for the simple α− s model are drawn, where the following
definitions have been used: α = −2µ0q2R(dp/dr)/B2

T and s = (r/q)(dq/dr). Here R and
BT were inserted with their values at the axis and r = rs

√
X. Fig. 3(a) shows results for the

pressure gradients of Fig. 2(a). As dp/dΨ ' −(dp/dr)/(2πRBp) and spatial measurements
have been used, dp/dΨ was updated for each iteration cycle during the equilibrium calculation.
Interpreting the measured Te and Ti profiles more aggressively towards the stability limit,
the picture of Fig. 3(b) with edge pressure gradients greater by a factor of about 1.8 was
obtained. The two surfaces marked as unstable cross the radial line described above at distances
of 0.37cm and 0.74cm from the outer side of the separatrix. The expected pressure gradient
scales for entering the first unstable regime is about 0.9, that for transition into second stability
approximately 1.2.
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