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Equilibrium and ballooning stability of resistive plasmas for given density, temperature and
z-effectiveprofilesisconsidered. Pressure and resistivity profilesare determined by an equation
of state and a neoclassical description of parallel resistivity, respectively. The poloidal current
distribution is obtained by solving the equilibrium problem taking into account Ohm'’s law.
Obtaining in thisway a diffusing plasma, the equilibria are characterized by the appearence of
electricfieldsand of flow. These aswell asballooning stability are discussed in connection with
profiles showing a pedestal-like structure near the separatrix.

1. Introduction

In previous work [1] the ballooning stability of tokamak divertor equilibriawith steep pressure
gradients in the immediate neighbourhood of the separatrix was studied. 1t was found that the
ideal-ballooning stability boundaries as well as the growth rates of the corresponding resistive
modes depend, besides on the chosen pressure profiles, in asensible way on the poloidal current
distribution. In the investigation [2] on ideal ballooning modesusing alocal equilibrium model
adistribution was chosen which corresponds to high plasmaresistivity near the separatrix. Here
we extend this approach to global tokamak equilibriawith non-zero edge current densities.

More generaly, in discussing the physical reasons for a particular form of the poloidal
current profileit isobserved that potential contributionssuch asbootstrap [3] or quasi-stationary
currents coming from an Ohmic transformer [4]. appear in the form of the flux-surface average
(j-B), so that acorresponding reformulation and solution of the equilibrium problem becomes
necessary.

2. Theory

The equilibrium partial differential equation with the current density writteninits standard form
IS 2
RQdiv% — 9muoRjr,  jr = ﬁ—%{% n 2WR§—$ (1)
We consider separatrix-defined solutions of this equation for given plasma current I, controlled
by avacuum magnetic field part of W so that the magnetic axisis at afixed position. We use the
notations I = I(V) for the toroidal current, where V is the volume of a magnetic surface, and
re-write the current density by replacing the term containing the dJ?/d¥ by the flux-surface

average of the paralel current j-B/(10J)

. (J-B) dp
where the dimensionless quantities Fg and N are given by
B2 2y 1 1/R2)-1!
Fp(1,]) = <<B§>> = {1+LRﬁ} ., N[R)= % (3)
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and Ly is a geometric inductance coefficient

1674

b = T Re ) [ [VVE/RE) @)

| and J — for given functions (j-B)/(1J) and dp/d¥ — must be determined solving the
two-point nonlinear boundary value problem

dI Cy(j-B) dp

e — PRI N2 (1 —Fe(1])—

1dJ2 Cs(j-B) dp

zav ~ elbe(l ‘”{‘T* v (6)

together with (1). Equation (5) describes equilibrium on average. (6) isthe differential relation
connecting ( j-B ) and dJ?/dW. Bothin (5) and (6) ascaling factor C is necessary which must
be determined so that the conditionsI = 0 onaxisand I = I, and J = Jp at the separatrix are
satisfied. Thisis achieved by adding athird equation dCs/dV = 0 leading to three equations
for I, Jand C, with the correct number of boundary conditions. Note the similarity between
(2)and (5). (j-B)/(10J) (which on axisisjT/27R) and dp/d¥ have the common dimension
[A/m?].

3. Calculations

Fig. 1 shows profiles ( j-B ) which apply for temperature, density and z-effective distributions
of an ASDEX Upgrade equilibrium resulting in the pressure and pressure gradient distributions
of Fig. 2(a). Except the axis and boundary regions, where ( j-B )ps vanishes, they are similar
inform.

Here we present calculations for equilibrium and 1,
ballooning stability which have been done using the
(j-B)/(10d)-term valid for a resistive plasma which is
obtained from the parallel component of Ohm’'slaw and s
where C, can be identified with the loop voltage U:

08 |
<j.B>, (bootstrap)

0.4 °
(i Bre _ U(1/R?) 0 o w
,qu 471'277“ (neochlassical nH) cccccccccc

0.0

(j-B)grp shows apedesta-like structure near the separa=~~ *° %2 %4 06 08 10

trix inherited from the T.—profile and has a close rela- Fig. 1: (j-B) normalized by its
tionship to the rotational transform . = 1/q as maximum vs. normalized flux.

a/Le)  U(1/R2)
dVv 42 J

(8)

Evenin caseswheredueto the persistence of inductive effects(7) might be not agood description
of the plasmacore, (8) can serve asaconvenient aid for g-profile shaping by suitably modifiying
n;- Inthisway alwaysauniform and continuous profiling from axis to boundary for the purpose
of equilibrium calculationsis possible.
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Fig. 2: (a) Edge pressure and pressure gradient distributions along a straight line leading from the
magnetic axis to the outer side of the separatrix. (b) The currents | and J as obtained as solutions of
equations (5,6).

Solving equation (6) makes the electric potential ¢ in the parallel component of Ohm's
law single-valued. This can be seen by flux-surface averaging

(R AT Atk | B

Note that at plasma boundary dys/0s (s being the arc length aong the separatrix) has a
pole at the x-point, whereas o is smooth and finite there. Due to the term scaling as
dps/0s o< 1y (Br/B2)(dp/dr) steep edge gradients of the pressure cause sheared electric fields
near the separatrix (Fig. 3(c)). Moreover, the presence of the electric potential ¢, implies flow
perpendicular to B

1 U dp
V)| = B2{P)><Vg0b < R2 + Ld\Ij>v\If} (10)
and, due to mass conservation, also parallel to B:
1 U dp Qum
The most general flow caused and allowed by the equations isthen
v = v, + S(¥)B + Q(V)R*V (12)

v, isthe specid solution obtained from above with ¢, = v = 0 on some reference lineleading
from the magnetic axisto the plasmaboundary and S, and €, are free functions.

4. Resultson Ballooning Stability

Stability against ideal ballooning modes is determined by the solution of the corresponding
Sturm-Liouville problem:

d /._dU
@(Pd9>+QU—O (13)
_ B-VO(1+9?) ~ 2u0(kn — Sky) , dp V|2 [dg ¢ !
b= Vop Q=- B-VO|VY| °d¥’ =5 |awar DT o (14)
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Fig. 3: Equilibrium («, s)-values on flux surfaces tested for ballooning stability. (a) for moderate, (b) for
steep plasma pressure edge pedestals. (c): Contours of constant electric potential (g
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The evaluation of S refersto the point under consideration (¢) and the localization point
poloidal angle @ = 6rp. T, isa periodic function describing diamagnetic effects and effects of
elongation and triangularity. P in (14) is an arbitrary scaling factor for showing up expected
pressure gradient and second stability effects without calculating new equilibria. The high-n
stability of the calculated equilibria was tested with the Garching ballooning code GARBO.
The mode localization points were positioned on the straight line of length r, leading from the
magnetic axis to the outer side of the separatrix. The results are presented in Figs. 3 (a) and
(b) as circles labeled by the corresponding normalized flux value X € (0, 1). For orientation
also the stability boundaries valid for the simple o — s model are drawn, where the following
definitions have been used: o = —2ppq*R(dp/dr)/B% and s = (r/q)(dq/dr). Here R and
Br were inserted with their values at the axis and r = r,v/X. Fig. 3(a) shows results for the
pressure gradients of Fig. 2(a). As dp/d¥ ~ —(dp/dr)/(27RB,,) and spatial measurements
have been used, dp/dW was updated for each iteration cycle during the equilibrium calculation.
Interpreting the measured T, and T; profiles more aggressively towards the stability limit,
the picture of Fig. 3(b) with edge pressure gradients greater by a factor of about 1.8 was
obtained. The two surfaces marked as unstable cross the radial line described above at distances
of 0.37cm and 0.74cm from the outer side of the separatrix. The expected pressure gradient
scales for entering the first unstable regime is about 0.9, that for transition into second stability
approximately 1.2.
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