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Drift waves are a likely cause of anomalous transport in fusion devices. The basic mechanisms

of instability should be the same for both tokamaks and stellarators alike. Stabilization of drift

waves, on the other hand, is mainly achieved through global and local shear damping, and by

effective localization of modes through toroidicity and helical ripple wells. These stabilizing

effects can differ for specific geometries, and it is in principle possible to optimize a stellarator

in this respect.

Although the theory should be a direct expansion of tokamak studies, investigations in

the past were sparse and adresses only a few specific geometries for helical symmetry [1,2], a

torsatron [3] and heliac [4,5]. The essential questions, if in respect to the reduction of growth

rates one stellarator geometry has to be favoured over an other or if an effective optimization is

possible have not been addressed yet. In this contribution, we discuss in a basic electrostatic

WKB model the effect of stellarator optimization due to reduction of Pfirsch-Schlüter currents on

linear drift instability. The helical advanced stellarator (Helias) concept [6] is underlaid for the

investigation of drift mode properties in three devices with increasing optimization: Wendelstein

7-AS, which is in operation and where experimental data are available; Wendelstein 7-X, which

is under construction; and HSR, a concept study for a stellarator reactor [7]. In the table

below, specific dimensions of the devices are compared. However, by using dimensionless and

scale-independent formalism, focus in our study is set on geometrical aspects of optimization

only.

Wendelstein 7-AS R0=2.1 m a0=0.20 m B0=2.5 T T0=1.5 keV rot. trans. 1/4 < ι < 2/3

Wendelstein 7-X R0=5.5 m a0=0.52 m B0=3.0 T T0=5.0 keV rot. transf. 5/6< ι < 1

Helias Reactor R0=22.0 m a0=1.8 m B0=5.0 T T0=15.0 keV rot. transf. 5/6< ι < 1

1. Drift wave model and numerical eigenvalue code

We adopt the electrostatic drift wave model in the approximation for fluid ions and nearly

adiabatic electrons. The derivation is standard: Ion continuity, momentum and quasi-neutrality

equations form a closed system. From momentum balance we obtain velocities v‖i and v⊥i,

withE×B drift vE, ion polarization drift vpi and ion diamagnetic drift vDi. Non-adiabaticity is

retained by ξ = 1− iδ (δ > 0). Inserting into the equation of continuity, carrying out gradients

and applying the usual drift ordering we obtain a second order differential equation for the

perturbed electrostatic potential Φ̂ ≡ eΦ/Te0:

∇̂2
‖Φ̂ =

(
Û + iV̂

)
Φ̂. (1) with



Û = u0ω̂

[
ω̂

(
B̂ξ

rT̂e
+ rm2|∇̂α|2

)
−m(b× ∇̂α) · κ̂s

]
, V̂ =

u0ω̂ξ

B̂
(2τ + ηi)(b × κ̂B) · κ̂n.

An eikonal form is used for Φ̂ = Φ̂(ζ) · exp(−iωt+ imα), wherem is the (large) mode number,

α=θ-ιζ is a function of poloidal angle θ and toroidal angle ζ in Boozer coordinates. Above,

b = B/B, τ ≡ Ti/Te, ∇̂ = a0∇ and u0 = −4rB̂Ĵ2/(1+ξτ ). κ̂n ≡ ∇̂ lnn0 and κ̂B ≡ ∇̂ lnB,

and κ̂s ≡ [1+ ξτ (ηi−1)]κ̂n− [1+ ξτ ]κ̂B, where ηi = ∂ lnTi/∂ lnn0. We denote T̂e ≡ Te/Te0,

B̂ ≡ B/B0, ω̂ ≡ ωa0/cs, r ≡ ρs0/a0, ηi = ∂ lnTi/∂ lnn0. Here Ĵ = [∇̂s ·(∇̂Θ×∇̂ζ)]−1 is the

Jacobian, ρi0 =
√
MTi0/(eB0) is ion gyro radius and ci0 =

√
Ti0/M is ion thermal velocity on

axis. Ln = (∂s lnn0)−1, ξ̂ ≡ 1 + ξτ (ηi − 1) and τ̂ ≡ 1 + ξτ . For τ = 0 and T̂e = 1, Û reduces

to the form used in Refs. [1,2,3,8]. By using metric elements gµν = ∇µ · ∇ν we can express

Û and V̂ as functions of geometrical values (gµν, ι, ∇ ln B̂) [9]. Local shear S = (b · ∇)σ is

determined by σ = (gsθ − ιgsζ − ζ∂sιgss)/gss.

Metrical quantities are calculated using three-dimensional numerical equilibrium code data

in Fourier representation. The system of equations is solved using standard shooting techniques

in a complex eigenvalue code suitably developed for three-dimensional equilibria. Only the

more unstable symmetric eigenfunctions are searched for by a Mueller algorithm. For details

see Refs. [2,9].

2. Linear spectrum in "iδ"-approach

By solving Eq. (1) for a given equilibrium we obtain the eigenfunctions and a spectrum of

eigenvalues (ωR, γ). As matching point ζ0=0.5, θ0=0, s=1/4 is taken, which is a symmetry point

and corresponds to a helical potential function well. Density depends as n = n0(1− s)2. For

non-adiabaticity we assume an arbitrary fixed value of δ = 0.01 (as e.g. in [2]). For δ = 0 and

τ = 0 all solutions are marginally stable. Various scenarios on the effects of finite δ and τ are

depicted in Fig. (1a).
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Fig. 1: a) A: τ=0, δ=0; B: τ=1, δ=0; C: τ=0, δ=0.01; D: τ=1, δ=0.01. All for W7-X with m=50, ηi=2.
b) Case D in detail with inset real wave function ΦR(ζ) for most unstable mode.

In accordance with Refs. [1,2,3] we find in Fig. (1b) both weakly and strongly localized

modes. Mode number spectra of each of the three Helias configurations are compared in

Fig. (2a). Here r ≡ rW7X = 0.005 is set identically for all configurations.
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Fig. 2: a) Mode number spectra for Helias configurations W7-AS, W7-X and HSR.
b) Local shear |S| in one field period on s=1/2.

The increase of |S| (Fig. 2b) can be expected to have the major contribution to the observed

favourable behaviour of one configuration over an other [8]. An increase of S is only an indirect

consequence of optimization: In the Helias approach to reduction of Pfirsch-Schlüter currents,

helicity and field line torsion are increased. Over change of pitch angle of field lines with

radius, torsion again is related to shear S. Still, HSR in Fig. (2a) shows better performance for

most mode numbers m despite less absolute local shear than W7-X. The seemingly dominant

competing mechanism in the present warm ion model is the mostly favourable normal curvature

for HSR compared to W7-X.

3. Dissipative trapped electron mode (DTEM)

Particles confined in a magnetic mirror can be detrapped by collissions, which is the cause

for the trapped-particle instability. We basically follow the linear DTEM theory as treated

explicitly by Dominguez et al. [3]. In order to focus on particle trapping effects, we restrict

to τ = 0. This enables the perturbative approach by arriving at a single ordinary differential

equation, ∂2
ζ Φ̂ = (Û0 + Û1)Φ̂. Here Û0 is real, and Û1 is the complex perturbed potential that

stems from δ, which in return is calculated from trapped electron response. For details, see

Refs. [3,9]. For Û1 = −iδω̂2
0/T̂e with δ = 2√

π
· ω̂∗
ν̂f

[(
1− ω̂0

ω̂∗

)
+ 3

2
ηe
]
· ∫ dΛB̂/(Λ3/2

√
Λ− B̂),

we obtain the complex change in the eigenfrequency through the perturbational calculation

to be iγ = − (
∫

dηΦ0U1(ω0) 〈Φ0〉) /
(∫

dηΦ2
0 ∂U0/∂ω|ω0

)
, where 〈Φ0〉 = (

∫
dtbΦ)/(

∫
dtb) is

bounce average of the electrostatic potential over the trapping region. Integration over bounce

length along the field line is between turning points, and over Λ = E/(µB0) between maximum

values of B along the field line in each summed up trapping interval.

To obtain the mode number spectra in Fig. (3b) for each of the three Helias devices,

ν̂f ≡ 0.2 and r = rX are held constant. For W7-X and m = 50 the frequency spectrum is

shown in Fig. (3a). Now stability ordering compatible with local shear strength is found more

clearly than in the corresponding Fig. (2a). In addition to the role of local shear as previously

discussed, here also interplay between trapping intervalls and regions of wave localization comes

to significance.
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Fig. 3: a) DTEM growth rate for W7-X (m=50). Two branches can be distinguished, the first with helical
localization of the wave and containing the most unstable mode, the other at larger frequencies

showing toroidal localization. b) DTEM mode number spectra; c) Comparison with experiment.

4. Comparison with experiment

From linear theory only a rough mixing length estimate can be obtained for the anomalous

diffusionD ≈ γ∆2
r, with radial mode width ∆r = ρs/(S∆ζ) and average width along the field

line ∆2
ζ = (

∫∞
−∞ dζ|Φ|2ζ2)/(

∫∞
−∞ dζ|Φ|2). From these and DTEM growth rates D ≈ 0.7 m2/s

can be inferred for W7-AS, which is of realistic order.

Fluctuation data have been measured at W7-AS e.g. by Langmuir probes [10]. Spectra

show qualitatively sound agreement in Fig. (3c) between experimental values and calculation

for corresponding parameters. An observed feature for this boundary value of s = 0.99 is a

highly unlocalized nature of modes (∆ζ ≈ 50).

5. Conclusions

In this comparative numerical study of linear drift waves in Helias stellarators, a significant

increase in stability has been observed for growing stellarator optimization in HSR and W7-X

compared to W7-AS. This is mainly understood in terms of local shear properties. The DTE

mode is able to describe qualitatively both experimentally observed diffusion and fluctuation

spectrum in W7-AS. For detailed investigations, however, nonlinear mode-coupling calculations

will have to be performed. Full-scale turbulence simulations are currently being prepared and

will be presented elsewhere.
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