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1.  Introduction

The privileged equilibria are associated, in our definition, with a stationary magnetic entropy,

a quantity that measures, in the framework of information theory, the probability of coarse -

grained current density configurations in a suitably constrained possibility space of the

macroscopic plasma equilibria. The constraints involve: 1) a fixed (but unspecified) value of

the current density dispersion generated by the underlying particle structure and 2) a fixed

value of the magnetic energy plus the possible interaction energy of the magnetic system with

the external world [1]. In an isolated system (e.g. a plasma completely surrounded by a

perfectly conductive shell) the interaction energy is zero and the magnetic entropy is not only

stationary but maximum. In an open system, as is the tokamak in interaction with the ohmic

transformer and with the auxiliary heating, the magnetic entropy may be stationary, at the

most.

In this work we study the dependence of the tokamak states with stationary entropy on

the intensity and on the deposition profile of the auxiliary heating. These factors are found to

have considerable bearings on the magnetic equilibrium, in particular on the generation of

states with negative magnetic shear and on the form of the pressure and of the thermal

diffusivity.

2.  Tokamak Equilibria with Stationary Magnetic Entropy

The magnetic entropy S  is stationary in a tokamak when the toroidal current density 
��

j = jφ
��

e φ

satisfies the following relation (see [1] and the references quoted therein)

��

dS

dt
=

��

E 

µ2
∆V

∫ (∆
��

j + µ2
��

j )dV + pAdV
∆V

∫ = 0                                                                        (1)

Here ∆  is the Laplacian, 
��

E = E
��

e φ  with E = E0R0 / R  is the externally induced electric field,

pA is the auxiliary power density and µ2
 is a parameter which arises as a Lagrangian

multiplier related to the constraint 2) and which labels the family of states with constant

entropy. We require that S  is stationary locally so that ∆V  is any sector of the plasma column

delimited by two magnetic surfaces. It follows that jφ  must satisfy the equation

∆jφ + (µ2 −1 / R
2
)jφ = −µ2

pA / E                                                                                 (2)

This equation determines the poloidal magnetic configuration in terms of the auxiliary power

density. Hollow current density profiles and negative magnetic shear are generated depending

on pA(r)  when µ2  is taken as negative in a region adjacent to the minor axis. Since µ2  must

be positive near the border in order to satisfy the boundary conditions there, a point r = ξ



must exist where µ2  changes its sign. The point ξ  is fixed by matching continuously the

solution and its derivative.

The pressure and the profile of the toroidal field follow from the compatibility between

the stationarity condition (1) and the Grad-Shafranov-Schlüter equation

4πjφ / cR = ∇ • R
−2∇ψ = − F

2
(ψ)( )'

/ 2 R
2 + 4πp

'
(ψ)[  ]                                               (3)

Applying the first equality (3), Eq. (1) can be reduced to the following condition:

(E∇jφ − jφ∇E)• d
��

S + (µ2
E0R0c / 4π) R

−2∇ψ • d
��

S + µ2
pAdV = C

V( ψ)

∫
S (ψ )

∫
S (ψ)

∫               (4)

where S(ψ)  is any surface with constant poloidal flux ψ   enclosing the volumeV( ψ)  and

C   is a constant. Applying the second equality (3) one obtains from (4) the relation (in the

cylindrical limit with circular magnetic surfaces)

8πR0
2
p"(ψ) + F

2
(ψ)( )" = 2µ2 + (4πµ2

/ E0I(ψ)) pArdr − C / πE0R0I( ψ)
0

r(ψ )

∫                 (5)

where I(ψ)  is the current flowing inside the surface S(ψ)  ,  I(ψ) = cr(dψ / dr) / 2R0  .  To

satisfy (5) we put

p"(ψ) = ε(µ2
/ 2 E0R0

2
I(ψ )) pArdr

0

r( ψ)

∫                                                                             (6)
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2
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0
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∫

Thus the indetermination of the toroidal equilibrium due to two arbitrary functions

p(ψ),F(ψ)  has been reduced to that of the free parameters ε  and µ  which label a family of

states with constant entropy and different paramagnetism and pressure gradient. Acceptable

states with positive pressure profiles are obtained with positive or negative values of the

parameter ε <<1.

3.  Condition on Thermal Diffusivity

The realization of magnetic states described by Eq. (2) implies a condition on the thermal

diffusivity in the one-fluid approximation of the power balance. In a cylinder the balance is

described by the equation
1

r

d

dr
(rnχ dT

dr
) = Ejφ + pA . In the same approximation Eq. (2) takes

the form−
E

µ2

1

r

d

dr
(r

djφ

dr
) = Ejφ + pA . It follows by comparison that

χ = −
E

µ2

djφ / dr

dp / dr
−

C0

rdp / dr
                                                                                          (7)

where p = nT   is the pressure and n  has been taken as uniform for simplicity. The constant

C0  > 0 is determined by continuity across r = ξ . Thus the stationary entropy current density

profile which must guarantee on inertial time scales the establishment of mechanical force

balance (Grad-Shafranov-Schlüter equilibrium) in auxiliarly heated discharges has a definite

relation with the energy transport equation, thereby constraining the profile of the thermal

diffusivity coefficient  χ   to  a  self-consistent radial dependence whatever may be its scaling,



χ =
T

B
F(ρ*, ν*,β)  with the typical transport dimensionless parameters ρ*,ν*,β  . This agrees

with the profile consistency concept proposed by Coppi in 1979 [2] for ohmic discharges,
which is now seen from the point of view of equilibria with stationary magnetic entropy.

 The expression above for χ  implies that the zero shear regions have a minimum heat

diffusivity.  Reverse shear configurations with an off-axis maximum of jφ  have therefore a

localized minimum of χ , akin to so called "thermal barriers" but related to the position of the

maximum of jφ  or of the minimum of q, rather than to the rational q surfaces as suggested

recently [3]. In the case of sharply localized power deposition such as ECR the "barrier"

appears therefore essentially related to the position of the heating power. Consequently, in

such conditions there is no need to invoke sudden special modifications of the microscopic

properties of the medium at the rational q surfaces, to explain apparent heat flow barriers.  In

conclusion it has been shown that negative shear equilibria may exist as steady state optimal

profiles for an open system with stationary entropy conditions, which constitute a self-

organization criterion: the self consistency of transport and equilibrium imply profile

modifications of the heat conductivity similar to "transport barriers".
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Fig. 1.  Demonstration case of RFS equilibrium J (upper) and q (lower) profiles with PA/PΩ=6, Ip=0.5MA



   
Fig. 2a.  PΩ=700kW, PA=2MW; Ip=0.5 MA               Fig. 2b. Safety factor q profile with reverse shear.

deposition width σ2=0.002; J(r) and PA(r).

Fig. 2c.  Canonical equilibrium pressure profile           Fig. 2d.  Self-consistent thermal diffusivity profile.

 Fig. 3a.  As Fig. 2a with  PA=1.5 MW peaked at r/a=0.4 .           

Fig. 3b.  Canonical equilibrium pressure profile.           Fig. 3c.  Self-consistent thermal diffusivity profile.


