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1. Introduction
Cylindrically symmetric magnetic-field-aligned plasma nonuniformities, the so-called density

ducts, are known to affect significantly the features of radiation from given sources immersed

in such plasma structures [1]. Recent “active” space experiments and model laboratory exper-

iments [1, 2] provide evidence that ducts with enhanced density can be formed in a magneto-

plasma due to various nonlinear effects. In this paper, we examine the influence of a cylindri-

cal density enhancement aligned with an external magnetic field and surrounded by a uniform

background plasma on the coherent spontaneous emission from a thin modulated electron beam

injected along the enhancement axis. Since the study of nonlinear effects connected with the

beam–plasma interaction in the presence of plasma nonuniformities seems impossible without

a detailed preliminary analysis of the beam-excited electromagnetic field in the linear approx-

imation, we assume that the beam is given and consider the simplest case of an axisymmetric

cylindrical duct with a step-shaped radial density profile. A major aim has been to compare

the average power radiated from a modulated electron beam of finite length at the modulation

frequency belonging to the whistler band in the presence of an enhanced-density duct and in

the case where the beam is injected in a homogeneous magnetoplasma [3].

2. Theoretical Model
Let an infinitely long cylindrical density duct of radius a be immersed in a uniform cold mag-

netoplasma. The duct axis is taken as the z axis in a cylindrical coordinate system (ρ, φ, z).

Parallel to this axis is an external static magnetic field B0 = B0ẑ0. The plasma density N is a

function only of distance ρ from the axis, and is defined by

N(ρ) = Na + (Ñ − Na)[1 − H(ρ − a)], (1)

where Ñ and Na are constant plasma densities inside the duct (ρ < a) and in an outer region

(ρ > a), respectively, and H is the Heaviside step function.

The medium is assumed to be described by a dielectric tensor having the following form

for a monochromatic signal with a time dependence of exp(iωt):

ε̂ = ε0(ερ̂0ρ̂0 − igρ̂0φ̂0 + igφ̂0ρ̂0 + εφ̂0φ̂0 + ηẑ0ẑ0), (2)
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where ε0 is the permittivity of free space and the tensor elements ε, g, and η are functions of ω.

Expressions for the tensor elements can be found elsewhere.

We consider a modulated electron beam of finite length and radius b injected along the duct

axis (b < a). The beam current density can be specified as

j(ρ, z, t) = ẑ0 jz(ρ, z, t) = ẑ0I0(πb2)−1[1 − H(ρ − b)]

× H(z) H
(

t −
z

vb

) [

1 + sin ω0

(

t −
z

vb

)]

exp(−βz), (3)

where I0 = −enbvbπb2 is the total beam current, ω0 is the modulation frequency of the beam

current, vb is the beam velocity, nb is the beam density (constant for ρ < b), e is the magnitude

of the electron charge, and β is the inverse coherence length of the beam [4].

To derive expressions for the beam-excited field, we use Laplace – Fourier transform of the

beam current and the field with respect to the time t and the coordinate z. The solutions of

the Laplace – Fourier transformed Maxwell equations in the regions ρ > a, b < ρ < a, and

ρ < b are represented up to coefficients independent of ρ in terms of Hankel functions, Bessel

functions of the first and second kinds, and Bessel functions of the first kind, respectively. For

example, the components Eφ(ρ, kz, s) and Bφ(ρ, kz, s) in the region ρ < b are given by the

formulas

Eφ(ρ, kz, s) = i
2
∑

k=1

BkJ1(k⊥kρ), Bφ(ρ, kz, s) = −c−1
2
∑

k=1

nkBkJ1(k⊥kρ), (4)

where

n1,2 = −
ic

s

ε

kzg

[

k2
⊥1,2 + k2

z −
s2

c2

(

g2

ε
− ε

)]

, (5)

J1 is a Bessel function of the first kind of order unity, Bk are unknown coefficients, c is the

velocity of light in free space, k⊥1 and k⊥2 are two branches of the transverse wavenumber

corresponding to the axial wavenumber kz in a magnetoplasma, and s is a complex variable

related to the wave frequency, s = iω.

Application of the boundary conditions at ρ = a and ρ = b and the radiation condition at

infinity yields the coefficients in the field expressions. Next, using inverse Laplace – Fourier

transform, one arrives at the resulting integral representation for the beam-excited field.

3. Power Radiated
The power lost by beam is

P = −2π
∫

jz(ρ, z, t) Ez(ρ, z, t) ρ dρ dz, (6)

where the integration is performed over the beam volume. Substituting the integral represen-

tation for the Ez component, using the Maxwell equation relating this component to the Bφ

component, and performing averaging over a time period long compared to the modulation pe-

riod, one obtains the following expression for the case of a collisional magnetoplasma in the
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limit β → 0 considered here:

〈P 〉 = Z0I
2
0

L

2πk0b2

{

Im
(

η̃−1B̂φ(b, ω0/vb, iω0)
)

+
∫ +∞

−∞

Im
(

η̃−1B̂φ(b, κz + ω0/vb, iω0)
) sin2(κzL/2)

πκ2
zL/2

dκz

+ −
∫ +∞

−∞

1

κz

Re
(

η̃−1B̂φ(b, κz + ω0/vb, iω0)
) sin κzL

πκzL
dκz

}

, (7)

where B̂φ(ρ, kz, s) = −Bφ(ρ, kz, s)/[µ0b jz(0, kz, s)], µ0 is the permeability of free space, k0 =

ω0/c, Z0 = (µ0/ε0)
1/2, L = vbt is the instantaneous beam length, η̃ denotes the dielectric-

tensor element η inside the duct, and the bar on the integral sign indicates the Cauchy principal

value.

Equation (7) is a general representation for the average power loss of the modulated beam

injected parallel to the axis of a cylindrical channel in a collisional magnetoplasma. It is to

be emphasized that Eq. (7) is valid for channels with both enhanced and depressed plasma

density. Note that an expression for 〈P 〉 in the special case of a collisionless magnetoplasma

can be obtained immediately from Eq. (7) (see [5]).

We now present the results of calculations of the average radiated power for the case of

an enhanced-density duct in a magnetoplasma modeled upon the Earth’s ionosphere. We as-

sume that the modulation frequency ω0 belongs to the whistler band, i.e., lies between the

lower-hybrid frequency and the electron gyrofrequency which is less than the electron plasma

frequency. We note that waves of the whistler band play an important role in many physical

phenomena in the ionosphere. In this band, a magnetic-field-aligned duct with enhanced den-

sity is capable of guiding improper leaky modes [1] whose attenuation can be very small under

certain conditions. The influence of these slightly attenuated leaky modes on the quantity 〈P 〉

is well pronounced if the ratio ω0/vb is close enough to the real part of their complex axial

wavenumbers kz,ν , where ν is the leaky-mode order (ν = 1, 2, . . .) [1].

Figure 1 shows the normalized (to I2
0 ) quantity 〈P 〉 as a function of the parameter c/vb and

the beam length L for typical conditions of the active experiments on the formation of artificial

enhanced-density ducts in the Earth’s ionosphere [2]. Also presented is the quantity 〈Pa〉 for

the beam injection in an ambient uniform plasma. With the parameters used for plot (a), the

least-attenuated leaky mode in the duct has the axial wavenumber kz,1 = k0× (24.39− i0.074).

It is evident from Fig. 1 that the presence of a duct affects significantly the dependence of the

emitted power on the beam velocity. At c/vb = Re (kz,ν/k0), one can observe resonance peaks

of 〈P 〉 related to Čerenkov excitation of guided modes with the axial wavenumbers kz,ν . On

the contrary, in the absence of a duct, the power 〈Pa〉 is a smooth function of vb and L, except

for the region where the parameter c/vb approaches the point Re Pc = 12.9 corresponding

to conical-refraction (“double-pole”) whistler-mode waves in the surrounding medium [1, 3].

Similar results were also obtained for conditions of the laboratory experiments modeling the

beam radiation in the ionospheric plasma.
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Figure 1: Average power lost by a modulated beam at the modulation frequency as a function

of the parameters c/vb and L (a) in the presence of a duct and (b) for an ambient uniform

plasma. Ñ = 3 × 106 cm−3, Na = 106 cm−3, B0 = 0.5 G, ω0/2π = 120 kHz, a = 10 m, and

b = 1.5 m. For both plots, the electron collision frequency νe = 10−3ω0.

4. Conclusions
In the present paper, we have considered the electromagnetic radiation from a modulated elec-

tron beam injected in a magnetic-field-aligned cylindrical density enhancement in a collisional

magnetoplasma. Calculations performed for the case of excitation of whistler waves by the

beam reveal that the power lost by the beam can increase noticeably due to Čerenkov reso-

nance excitation of whistler modes guided by the density enhancement. It is evident from the

results obtained that the resonance features of the excitation of guided modes make it possible

to change significantly the beam power loss by the variation of beam energy and to select dif-

ferent regimes of the power loss in much narrower energy intervals than in the case of beam

injection in a uniform magnetoplasma.
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