Parallel Flows and Plasma Equilibria in Dipolar Magnetic Configurations

T. K. Soboleva¹, S. I. Krasheninnikov², and P. J. Catto³

¹Instituto de Ciencias Nucleares, UNAM, Mexico D.F., México and Kurchatov Institute, Moscow, Russia
²University of California San Diego, La Jolla, CA, USA
³Plasma Science and Fusion Center, MIT, Cambridge, MA, USA

Abstract

The effects of parallel plasma flow on plasma equilibrium in dipolar magnetic configurations (MC) are considered by applying a separable form of magnetic flux function. Both analytical and numerical solutions of the plasma equilibria for sub-Alfvenic plasma flow are presented. However, no physically meaningful solutions with super-Alfvenic plasma flow are found.

I. Introduction. Plasma equilibria in a dipolar MC and the effects of the plasma flows on these equilibria are of interest for both laboratory experiments [1-4] and astrophysical applications [5,6]. The effects of parallel plasma flows on plasma equilibrium in dipolar MC are the topic for this study. From the ideal MHD equations assuming toroidal symmetry we can derive [7] the following equations for the plasma equilibrium in a dipolar MC.

\[\rho \vec{v} = \vec{B} \Phi(\psi) \] (1)

\[\vec{B} \cdot \left(\frac{\rho \nabla \vec{v}^2}{2} + \nabla P \right) = 0 \] (2)

\[\nabla \left(\left(1 - \frac{\Phi^2}{\rho} \right) \frac{1}{R^2} \nabla \psi \right) + \frac{\vec{B}^2}{2\rho} \frac{d\Phi^2}{d\psi} \left| \nabla \psi \right|^2 + \left(\frac{\rho \nabla \vec{v}^2}{2} + \nabla P \right) \nabla \psi = 0 \] (3)

where \(\rho, \vec{v}, \) and \(P \) are the plasma mass density, velocity, and pressure; \(\psi \) is the magnetic flux function; \(\vec{B} = \nabla \psi \times \nabla \Phi \) is the magnetic field; \(\Phi(\psi) \) is the arbitrary function of \(\psi \); and \(R \) is the distance from the major axis. To reduce Eq. (1)-(3) we will follow [8] and introduce a separable form for the flux function \(\psi \) written in spherical coordinates \((r, \varphi, \mu = \cos \theta)\), i.e. the anzatz

\[\psi(\mu, r) = \psi_0 h(\mu) (r_0 / r)^\alpha, \] (4)

where \(\alpha \) is an adjustable parameter, \(h(\mu) \) is an unknown function of \(\mu \) alone, and \(\psi_0 \) and \(r_0 \) are normalization constants \(h(\mu) \) and \(\alpha \) play the roles of the eigenfunction and eigenvalue of
the nonlinear Grad-Shafranov equation. To apply anzatz (4) we need (see Eq. 3) to assume
\[\left(\Phi(\varphi) \right)^2 / \rho(\tilde{r}) \equiv \left(\nu/V_A \right)^2 \equiv W(\mu), \tag{5} \]
where \(V_A \) is the Alfvén velocity and \(W(\mu) \) is some function of \(\mu \) alone. Substituting Eq. (5) in (2) and (3) and assuming that \(P=0 \) we find that product \(BW \) supposed to be a function of \(\psi \). Since \(W \) is a function of \(\mu \) alone, using the anzatz (4), which corresponds to
\[B^2 \propto \left(\alpha^2 \mu^2 / (1 - \mu^2) + (d\psi / d\mu)^2 \right)^{-2(\alpha+2)}, \]
we find the expression for \(W(\mu) \),
\[W(\mu) = \frac{W_0}{h^{(\alpha+2)/\alpha}} \left(h^2 / (1 - \mu^2) + \alpha^{-2}(d\psi / d\mu)^2 \right)^{1/2}, \tag{6} \]
where \(W_0 \geq 0 \) is a constant, as well as the equation for the function \(h(\mu) \)
\[\frac{d}{d\mu} \left(1 - W \right) \frac{dh}{d\mu} + \alpha(\alpha + 1) \frac{(1 - W)h}{1 - \mu^2} + \alpha(\alpha + 2) \frac{W_0^2}{W} h^{(\alpha+4)/\alpha} = 0, \tag{7} \]
which describes equilibrium of pressureless plasma with parallel flow in dipolar MC. As the boundary conditions we can take
\[h(\mu^2 \rightarrow 1) \propto 1 - \mu^2, \quad h(\mu = 0) = 1, \quad \text{and} \quad (d\psi / d\mu)|_{\mu=0} = 0, \tag{8} \]
which implies, finite magnetic field at the major axis, normalization of the constant \(\psi_0 \) (4), and “up-down” symmetry of the MC. Thus the 2-nd order Eq. (7) having 3 boundary conditions is over-determined and it’s solution is only possible for some special relation between the constants \(W_0 \) and \(\alpha \), \(\alpha = \alpha(W_0) \). From Eq. (7) we need to find both \(\alpha = \alpha(W_0) \) and \(h(\mu) \), corresponding to this \(\alpha \). We will consider only positive \(\alpha \). Then at a given flux surface \(\psi \) we have \(r \propto h(\mu)^{1/\alpha} \bigg|_{\mu \rightarrow \pm 1} \rightarrow 0 \) and the magnetic flux is reminiscent to the MC of a point dipole.

II. Solution. A. The case \(W_0 < 1 \). For \(W_0 \ll 1 \) we find the following dependence \(\alpha = \alpha(W_0) \)
\[\alpha - 1 \approx -\frac{W_0}{2} \int_0^1 \frac{(1 - \mu^2)^3 (1 + 15 \mu^2)}{(1 + 3 \mu^2)^{3/2}} d\mu \approx -0.49 \times W_0. \tag{9} \]
Eigenfunction \(h(\mu) \) corresponding to the above \(\alpha \) we find from the following expression
\[
\frac{1-f(\mu)}{W_0} \approx \hat{f}(\mu) \equiv \int_0^{1/2} d\mu' \left\{ \frac{2(1-\mu'^2)^2}{(1+3\mu'^2)^{3/2}} + \frac{1}{2} \left[2 + \mu' \right] \frac{\int_0^{1/2} d\mu'' \left(\frac{1-\mu''^2}{1-\mu'^2} \right)^2 \left(1+15\mu''^2 \right)^{1/2}}{(1+3\mu''^2)^{3/2}} \right\}.
\]

(10)

here \(f(\mu) = h(\mu)/(1-\mu^2) \). The function \(\hat{f}(\mu) \) found numerically from (10) is shown in Fig.1. For \(W_0 < 1 \) the equation (7) with the boundary conditions (8) was solved numerically. The dependence \(\alpha(W_0) \) found from these calculations is shown in Fig.2. Note that for \(W_0 < 1 \) the eigenvalue \(\alpha(W_0) \) found from the numerical solution agrees well with analytic estimate (9).

B. The case \(W_0 > 1 \). This case could correspond to the super-Alfvenic plasma flow if the boundary conditions (8) would be applicable. But it can be shown analytically that \(W_0 > 1 \) is not compatible with the boundary conditions (8), which describe well-behaved dipolar configuration with finite magnetic field. However we can relax the boundary conditions (8) and consider equilibria with an azimuthal current sheet located at \(\mu = 0 \). In this case the dipolar magnetic field line changes direction when it goes through the current sheet causing \((dh/d\mu) \bigg|_{\mu=0} \) to be finite and discontinuous. This extra freedom allows both \(h(\mu = 0) = 1 \) and \(h(\mu^2 \to 1) \approx 1 - \mu^2 \) to be satisfied. Therefore, when azimuthal current sheet is allowed at \(\mu = 0 \) the boundary conditions for Eq.(7) become

\[
h(\mu = 0) = 1, (p(\mu = \pm 0))^2 = p_0^2 \equiv W_0^2 - 1 \text{ and } h(\mu^2 \to 1) \approx 1 - \mu^2,
\]

(11)

Notice, that the plasma flow velocity at \(\mu = 0 \) just reaches the Alfven velocity even when \(W_0 > 1 \). For \(W_0 \gg 1 \) the solution of Eq.(7) with boundary conditions (11) can be found analytically. From (7) we see that for \(p^2 \gg 1 \) we have \(dp/d\mu \sim O(1) \). Since \(\mu \) varies from 0 to 1 we can neglect the variation of \(p \) and assume that \(p^2 \approx p_0^2 \gg 1 \). Then from (7) we find that to satisfy (11) we should have \(\alpha \approx 1/W_0 \) and \(h(\mu) \approx 1 - |\mu| \). Notice, that flux surfaces corresponding to this solution are squeezed about equatorial plane. We also solve Eqs. (7),(11) numerically to determine the function \(\alpha(W_0) \) which is shown in Fig.3. We find that
\(\alpha \) varies continuously as \(W_0 \) passes through unity and both \(\alpha(W_0) \) and \(h(\mu) \) approach the limit obtained analytically at large \(W_0 \).

III. Conclusions. We find both analytical and numerical solutions of the equation describing plasma equilibrium in dipolar MC for sub-Alfvénic plasma flow and no physically meaningful solutions with super-Alfvenic plasma flow. We conclude that there is no steady-state axisymmetric equilibrium permitting super-Alfvénic parallel plasma flow for the class of separable dipolar magnetic configurations considered.

Acknowledgments

This research was supported by DOE (USA, under Grants No. DE-FG03-00ER54568 at the UCSD, No. DE-FG02-91ER-54109 at the MIT (USA), and the project IN 116200 DGAPA, UNAM (Mexico). S.K. is indebted to A. Boozer and E. Hameiri for fruitful discussions.

References

Figures

Fig. 1 The function \(\tilde{f}(\mu) \) found from numerical integration of expression (10).

Fig. 2 \(\alpha(W_0) \) found from numerical solution of Eq. (7) and (8) for \(W_0 < 1 \).

Fig. 3 \(\alpha(W_0) \) found from numerical solution of Eq.(7) and (11) for \(W_0 > 1 \).