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1. Introduction

The so-called drift tearing mode that was descrifiesti in Ref. [1] couples the effects of
magnetic reconnection, driven primarily by the plascurrent density gradient, with those of
the gradient of the longitudinal electron pressora strongly magnetized plasma. This mode
has found a renewed appreciation recently in viéwsorelevance to current experiments.
We have pointed out originally that for modes imiog singular perturbations the effects of
nonlinearities become important at very small atagés. In order to analyze these effects
we have started by reformulating the linearizeathef the drift-tearing mode, in the limit
where the electron thermal conductivity along tleddf is significant. Since the plane
geometry can simulate cylindrical and toroidal moder nf>1 modes, we refer to this

geometry for simplicity. Therefore the equilibriufreld is taken asB=B, (x)e, +B, (x)e,
with BZ<<BZ=B’; and its perturbatiorB=B (x)exp(-iwt+ik,y+ik,z), with ki >>k?
andk®= k§ . The scale lengths of the density and the magfietit gradients along the axis

y are assumed to be at the same order. The lomguélectron momentum balance
equation that we adopt includes all the compon#ms are relevant to a rather weakly
collisional regime, that is

0=-erg, -Up, —a.n0,T, +emJ, (1)

Here a is the finite numerical coefficient associatedhathe thermal force and the other
terms are easily identifiable. We anticipate the bongitudinal electron pressure gradient

terms are represented by the frequenciess, =—k cT,(dn/dx)/(eBn), and

oy = —k,c(dT,/dx)/(eB). In addition we takel%D +V xB/c=0 to describe the transverse

electron guiding center motion. Equation (1) thendmes
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where  J, = (c/4m0B, /9x = (c/41) /(-ik )?B, /ox?, W =(@+0;)w] +w,, and
EEX =V, /(-iw) . The equations that we consider at first areHerlinearized “reconnection”
layerd . <<a , around x=x where a is the plasma radiugB®k B(x=xg) = 0, O<xy<a andk§

can be neglected relative to the opera@dx? when applied to the perturbed quantities.
Within the d.-layer the effects of finite resistivity;, electron thermal conductivitye and

ion gyroradius represented by the frequenagy=k c(dp/dx)/(eBn arg¢ to be taken into

account.

2. Importance of Finite Electron Thermal Conductivity and Electron Compr essibility

The relevant theory, that includes the effectsle€teon thermal conductivity and electron
compressibility, is considerably more complex thizat the original one given in Ref.[1] but
is necessary for its application to high tempemi@gimes. In particular the complete form
of the electron thermal energy balance has to besidered. Thus we analyze the case
Y<lwr|~Ve, fOor w=uxtiy, and note that in this case reconnection dependhe effective

collision frequency

2 V2 k2T
=Z(1+a d I e ~vlL, for @ ~v?, 3
Veff 3( T) 2 +\)é|(me\)ee\)ql Vee Vel Vql ( )

as well as onl,. Herev, =k;D,, D, =2k,/(30) andvl =nne’/m,. We defined.r as
wy = (K 3,1)?D, wherek; = (k [B)/B. Then for|x - x, |> 8, the electrons can be treated
as isothermal, for|x-X,[<d,; as adiabatic [1], and fofx-X,|~d, the complete

expression for‘T'e/Te should be taken into account. Following a simpaocedure to that
indicated in Ref.[1] we are led to consider thdéolwing equation

Wy |, AW _ e Wy o X*W y-id X
_(1_w_$JA X’ :_'[1_d_t}F(X)}1+D (X)/D { wT%J1+D /o, Y
dl dl d mT m d| mT m

whereX= (X —X,)/8.;, W= wy +dauy +iy, with y~dux, &5 =5,;k,
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With®=w/wy. A=wD k*(g;) wy and Dur involves ver as is evident from its
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expression. Herev, = (k [B')*/(4mtgk® .)We find that the width of the transition layerois

k I 1/4 B 1/2 1

vl

O = [r_Q_eIJ (PSB—J K >0, (5)
p ~“ce

P

the order of

where p,=v_/Q,, VZ=T,/m,, p, =T /T.)"?p,, and the corresponding growth rate is

ci?
y~ (D, k*)¥* 0 ? /| og ['*. We observe thal, is rather insensitive to the temperature and

therefore the validity of the analysis presentee l#ould persist over a significant range of

temperatures.

3. Nonlinear Mod€
The nonlinear effects which are included in thepdémmodel equation that we have analyzed

are related to i) the (quasilinear) decrease gfdipand ii) the fact thafaxaf)qllax becomes
important relative toBp,=i(kMB)p, as k(B tends to vanish withind while

0Py /0 X|/|pgy|~1/8, tends to become singular. Consequently, the vaditihe layer where

these two effects are comparabledjs ~|§X0/ (kB')[*? and this width can exceed easily

that of the resistive reconnection layer [1] fortgsmall amplitudes of the reconnected field
B,, at x=%.

We argue that the transition into a fully non-lineegime can be made more probable in the

presence of previously excited modes that can geoaistronger nonlinear drive. In this case
the simplest of model equations we have considiered

d’B,
dx? '’

and the total momentum conservation equation cporeting toO0W ; = 0,0, is assumed

y@-0 f )B, =iy(k B)(X—X,)E, +D, (6)

to remain unchanged through the non-linear stalyes T

¥ d%&,, _i(kB
dx? 4ATip

,) _ dzéx
(X=X,) prveat (7)

Here B =B, (x=x,), On. is a constant parameter, and we have tdkgr|dE., /dx. We
note that within thedy -layer B, =B ,[1+¢,0(X)], wherees=kdn., X=(x-x,)/3,, and
d’¢ /dx* =0O(1). The solution forEEX(i) of these equations develops a singularity in the

curvature ongX (dzﬁfEX (X)/dx?) that is removed by the effects of finite resigyiyDn). The
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growth rate of the mode evaluated by the consideredel equation is enhanced relative to

that found by the linearized resistive theory aad be of the order af,&¥?. In this case,
EEX in the outer region remains finite and given by tldeal MHD approximation

EX =Zi(k EB)EEX. The nonlinear Eq.(6) can be reduced to the foligwform by making

suitable variable transformatio&:s?éx(i)li+ (—EV'EX(Y))2 +¥§EX(¥) =1, wheree is a small

number.
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Fig.1. Solution of the nonlinear model equatione Tashed curves are the solutions of the
unperturbed equation. Herg&,, (0) =0, &, (0) =0. 94are=0.1.

We note that tridimensional stability analyses @wnimg both cylindrical [2] (limited to
m’=1 modes) and toroidal [3] configurations have datttd that when the effects of the
parallel pressure gradient are included, the r&teeconnection produced by the excited
modes increases considerably, and the width ofebennection region is definitely broader.
In fact we consider that nonlinear drift-tearingdae can provide the explanation for modes
involving magnetic reconnection that have been tesk experimentally [4], and do not

appear to correspond to neoclassical tearing modes.
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