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1. Introduction 

The so-called drift tearing mode that was described first in Ref. [1] couples the effects of 

magnetic reconnection, driven primarily by the plasma current density gradient, with those of 

the gradient of the longitudinal electron pressure in a strongly magnetized plasma. This mode 

has found a renewed appreciation recently in view of its relevance to current experiments. 

We have pointed out originally that for modes involving singular perturbations the effects of 

nonlinearities become important at very small amplitudes. In order to analyze these effects 

we have started by reformulating the linearized theory of the drift-tearing mode, in the limit 

where the electron thermal conductivity along the field is significant. Since the plane 

geometry can simulate cylindrical and toroidal modes for m0>1 modes, we refer to this 

geometry for simplicity. Therefore the equilibrium field is taken as yyzz )x(B)x(B eeB +=  

with 22
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2 kk ≈ . The scale lengths of the density and the magnetic field gradients along the axis 

y are assumed to be at the same order. The longitudinal electron momentum balance 

equation that we adopt includes all the components that are relevant to a rather weakly 

collisional regime, that is 

 ||||e||Te|||| enTnpen0 JE η+∇α−∇−−≈  (1) 

Here αT is the finite numerical coefficient associated with the thermal force and the other 

terms are easily identifiable. We anticipate that the longitudinal electron pressure gradient 

terms are represented by the frequencies: )eBn/()dx/dn(cTk ||eye* −≡ω , and 

)eB/()dx/dT(ck ey
T
e −=ω . In addition we take 0c/ˆˆ

E ≈×+⊥ BvE  to describe the transverse 

electron guiding center motion. Equation (1) then becomes 
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T
eT

T
||e )1( ω+ωα+≡ω , and 

)i/(v̂ˆ
ExEx ω−≡ξ . The equations that we consider at first are for the linearized “reconnection” 

layer δL<<a , around x=x0, where a is the plasma radius, k||B≡k⋅B(x=x0) = 0, 0<x0<a and 2
yk  

can be neglected relative to the operator ∂2/∂x2 when applied to the perturbed quantities. 

Within the δL-layer the effects of finite resistivity η ||, electron thermal conductivity κe|| and 

ion gyroradius represented by the frequency )eBn/()dx/dp(ck iydi ⊥=ω  are to be taken into 

account.  

 

2. Importance of Finite Electron Thermal Conductivity and Electron Compressibility 

The relevant theory, that includes the effects of electron thermal conductivity and electron 

compressibility, is considerably more complex than that the original one given in Ref.[1] but 

is necessary for its application to high temperature regimes. In particular the complete form 

of the electron thermal energy balance has to be considered. Thus we analyze the case 

γ<|ωR|~νe||, for ω≡ωR+iγ, and note that in this case reconnection depends on the effective 

collision frequency  
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||e D)k( δ′≡ω  where B/)(k|| Bk ′⋅=′ . Then for LT0 |xx| δ>−  the electrons can be treated 

as isothermal, for LT0 |xx| δ<−  as adiabatic [1], and for LT0 |~xx| δ−  the complete 

expression for ee T/T
~

 should be taken into account. Following a similar procedure to that 

indicated in Ref.[1] we are led to consider the following equation 
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where LT0 /)xx(x δ−≡ , γ+δω+ω≈ω iR
T
||e , with γ~δωR, kLT

T δ≡εδ , 
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expression. Here )k4/()( 222
A πρ′⋅≡ω Bk . We find that the width of the transition layer is of 

the order of  
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m ||/)kD(~ ωωγ . We observe that δL is rather insensitive to the temperature and 

therefore the validity of the analysis presented here should persist over a significant range of 

temperatures. 

 

3. Nonlinear Model 

The nonlinear effects which are included in the simple model equation that we have analyzed 

are related to i) the (quasilinear) decrease of dpe||/dx and ii) the fact that x/p̂B̂ ||ex ∂∂  becomes 

important relative to ||e||e p̂)(ip̂ BkB ⋅=∇⋅  as Bk ⋅  tends to vanish within δL while 

L||e||e /1~|p̂|/|x/p̂| δ∂∂  tends to become singular. Consequently, the width of the layer where 

these two effects are comparable is 2/1
0xNL |)(/B

~
|~ Bk ′⋅δ  and this width can exceed easily 

that of the resistive reconnection layer [1] for quite small amplitudes of the reconnected field 

0xB
~

 at x=x0.  

We argue that the transition into a fully non-linear regime can be made more probable in the 

presence of previously excited modes that can provide a stronger nonlinear drive. In this case 

the simplest of model equations we have considered is 
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and the total momentum conservation equation corresponding to ||e||pi ûˆ ∇≈⋅∇ v  is assumed 

to remain unchanged through the non-linear stage. Thus 
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growth rate of the mode evaluated by the considered model equation is enhanced relative to 

that found by the linearized resistive theory and can be of the order of 2/3
A δεω . In this case, 

Ex

~ξ  in the outer region remains finite and given by the ideal MHD approximation 
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suitable variable transformation: ( ) 1)x(
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Fig.1. Solution of the nonlinear model equation. The dashed curves are the solutions of the 

unperturbed equation. Here, 947.0)0(
~

,0)0(
~

ExEx =ξ′=ξ  for ε=0.1 . 
 

We note that tridimensional stability analyses concerning both cylindrical [2] (limited to 

m0=1 modes) and toroidal [3] configurations have indicated that when the effects of the 

parallel pressure gradient are included, the rate of reconnection produced by the excited 

modes increases considerably, and the width of the reconnection region is definitely broader. 

In fact we consider that nonlinear drift-tearing modes can provide the explanation for modes 

involving magnetic reconnection that have been observed experimentally [4], and do not 

appear to correspond to neoclassical tearing modes. 
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