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1 Introduction 

A particle-in-cell (PIC) simulation technique suitable for describing phenomena evolving on time 

and spatial scales much shorter than respectively 1/のpe and そD was proposed by Joyce et al.[1]. In 

this method, which we henceforth refer to as quasi-neutral PIC or QPIC, the self-consistent 

electrostatic field Es is not determined from the Poisson equation but rather at each time step of the 

simulation Es is calculated from the electron momentum equation and the requirement of quasi-

neutrality. The QPIC technique is thus suitable where the governing temporal and spatial scales in 

the problem do not allow large departures from quasi-neutrality. The QPIC approach significantly 

reduces the simulation CPU time and mainly avoids swamping of the physically induced charge 

separation by statistical fluctuations in the electron and ion densities. Joyce et al. [1] emphasize 

the need for a QPIC technique, as opposed to a much simpler and faster hybrid quasi-neutral 

technique where electrons are described as a fluid, in problems where the electron and/or ion 

distribution function can be anticipated to be non-Maxwellian. The QPIC technique was adapted 

and successfully applied to tokamak edge plasma problems, specifically for the interpretation of 

data from Langmuir probes and field retarding analyzers in Ref. [2]. In the present work we 

concentrate on applying QPIC to the study of tokamak edge plasma behavior in the vicinity of a 

lower hybrid (LH) antenna. The QPIC simulations are faster by a factor of about 50 than the 

corresponding PIC simulations. Quasi-neutrality is maintained throughout the LH grill region and 

without plasma sources other than thermal plasma inflow along magnetic field lines. The plasma 

density in the grill region suffers a depression as a result of electron heating and acceleration. 

Under the same plasma source conditions the ion heating and power flow due to coupling via the 

charge separation field E is negligible, in agreement with previous MHD calculations [3]. 

 

2 QPIC simulation technique 

We consider electrostatic fields and a one-dimensional case specified by the Cartesian coordinate 

z. We assume global quasi-neutrality, i.e. the total number of electrons equals the total number of 

ions. The boundary conditions imposed on the simulation region must reflect the global quasi-

neutrality condition, i.e. for each particle leaving the region a like particle must enter. We further 

assume that the scale length and time scale to be resolved in the problem are large compared with 
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そD and 1/のpe, respectively. Thus the self-consistent electric field EZ always takes the value 

necessary to maintain quasi-neutrality. This field EZ is at each time step and grid point along the 

simulation region determined from the electron momentum fluid equation [1] 
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where the last term represents momentum transfer between the rf field and the electrons. EZ is the 

self-consistent field also felt by the ions and Erf is the lower hybrid antenna electric field only 

acting on the electrons. Further, Pe=me ne <v2> is the electron pressure. An essential part of the 

QPIC technique is a method of dealing with Eq. (1) to yield a solution EZ which enforces quasi-

neutrality. This is achieved by replacing the electron density ne in the pressure term of Eq. (2) by 

the ion density ni. This causes stable unphysical rapid oscillations yn of ne around ni which, as 

shown by Joyce et al. [1], are much slower than ype but having 1/yn much slower than ion time 

scales. The the first term on the right hand side of Eq. (1) only exhibits the rapid oscillations of ne 

around ni and is omitted. Finally then, Eq. (1) for EZ reduces to 
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With EZ given by (2) we solve the particle equations of motion 
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In order to fully exploit the computational advantage offered by QPIC we now replace the rapid rf 

electron dynamics (yLH
�

pe) by the much slower diffusive Langevin process 】 

t〉D2jF〉tv)(〉 】 -?  (4) 

where Ft is the time step, F and D are, respectively, the dynamic friction and diffusion coefficients 

derived for the electron-LH grill interaction in Ref [4], and u is a normally distributed stochastic 

variable having <u>=0 and <u2>=1. A complete time step cycle consists of pushing the particles 

to new positions in phase space (v,z) using Eqs (3), subsequently finding the new distributions fe 

and fi and finally calculating the integrals in (2) to update EZ. 

 

3 The 2
nd

 order area-preserving Runge-Kutta integration scheme 

In PIC and QPIC simulations with many particles and evolving on long time scales it is essential 

to use a sufficiently simple, accurate and stable integration scheme for the electron and ion 

equations of motion. For forces which are only a function of time and particle position, the time-

centered and second order accurate leapfrog (LF) method can be used [5]. The LF method is time-

reversible, area-preserving and conditionally stable [5]. Unfortunately, LF cannot be used here 
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since F and D in (4) depend on velocity. Instead we therefore use the following area-preserving 

(i.e. unity Jacobian) form of the the 2nd order Runge-Kutta (RK) method for equations of motion 

[6]: 
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The subscripts in (5) indicate time-levels. Area-preservation of the mapping (5) is achieved by 

first evaluating the new velocity vn+1 and using that instead of the usual RK anticipated velocity 

nn

*

1n at〉vv -?-  in the position equation. The scheme (5) is approximately time-centred and 

possesses the same numerical stability properties as the LF scheme [6]. 

 

4 Simulations of plasma response in the vicinity of an LH grill 

We consider the effect of a 16 wave-guide Tore Supra-like LH grill (wave-guide+septum width 

d=1.05 cm) generating a parallel (to B
E

) electric field 

(z)]tcos[のvのE qrf l/B  (6) 

Here, y=2rf, f=3.7GHz, vq=eE0/my is the electron quiver velocity, E0B3.5 kV/cm is the antenna 

electric field strength, and l(z) signifies the r/2 phasing between the 16 wave-guides. In the PIC 

simulations, shown in Fig 1 (with the self-consistent field EZ from the Poisson equation), the 

particle equations of motion are solved using the leapfrog method with full electron trajectories in 

the rf field (6). In the QPIC simulations, shown in Fig. 2 [with EZ from Eq. (3)] we use the Runge-

Kutta scheme (5) and the electron Langevin process (4) where ////

2

q vDF,/2d|v|vD ••?B  

[4]. The simulation region is made up of the grill region extended on each side by 8 cm plasma 

regions with Erf=0. The boundary condition in both cases is a Maxwellian plasma influx to 

compensate for the plasma outflow. The PIC simulation with 30 cells per wave guide, 100 

electrons and ions per cell, and a time step Ft=0.1/f took 40 hours. The QPIC simulation with 4 

cells per wave-guide, 600 electrons and ions per cell and a variable time step Ft=0.1 dz/vmax , 

where vmax B 2x107 m/s is the upper bound of the electron velocity space stochastic region [4],  

took 1 hour. It is interesting to note that unlike the PIC code in which the grid spacing must be 

smaller than the Debye length to maintain stability, the choice of grid spacing in QPIC is limited 

only by the need to resolve the expected macroscopic gradients. 
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Fig. 1   PIC simulation of plasma response to the LH grill electric field with Newton electron 

dynamics and the leapfrog integration method. a) The electron and ion densities exhibit a quasi-

neutral response. b) Electron and ion temperatures vs position. The electrons are strongly heated 

within the grill region. The initial conditions are Te = 50 eV, Ti= 200 eV, ne,i = 5x1017 1/m3. 

 

 

 

 

 

 

 

Fig. 2   QPIC simulation of plasma response to the LH grill electric field with Langevin electron 

dynamics and the Runge-Kutta integration method. a) Electron and ion densities and b) electron 

and ion temperatures vs position.  
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