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Introduction

A basic fluid model [1, 2] for the evolution of a turbulence field (e. g. the intensity

of turbulent noise), when coupled to a diffusive field (e. g. plasma density) through

the transport coefficient, conforms a reaction-diffusion system able to display many fea-

tures in qualitative agreement with experimental findings: transport barrier formation,

hysteresis [3], bursty behaviour and ELMy activity [4], non-local features under pellet

injection [5], etc. This phenomenology arises from the three possible stationary states

inherent to the model: high turbulent transport, low turbulent transport and an interme-

diate or marginal state where nonlinear features are most prominent [6]. Such description

of transport has a notable interest because (i) it has room for describing all sorts of phe-

nomena outside the purely diffusive paradigm and (ii) it does not involve essentially new

approaches -like, e. g., kinetic level calculations- to the problem of transport but, rather,

it simply extends traditional fluid-like transport models. However, these systems face

two serious difficulties: the corresponding equations pose a complicated problem from

the numerical point of view and the models that enter the evolution of the added fast,

or turbulent, fields are far from trivial. While there is an ongoing work to solve these

problems [7], the reaction-diffusion description of transport continues to yield new results

of qualitative interest (e. g. [8]), which can only be made quantitative if (i) models of

turbulent saturation and transport are sufficiently well-founded and (ii) analytical ap-

proaches support the numerical results to a satisfactory degree. It is acknowledged that

non-linear systems of equations can accommodate very rich dynamics that may however

be based on wrong physical notions. In an effort to falsify the model, it is useful to check

for inherent features that have not been observed experimentally. In the present work

we point to one such features.

Basic model. Propagation in the linear approach

The essence of the description of transport according to the paradigm proposed in Refs.

[1] and [2] is that the flux of a diffusive field maintained by a fixed source P0,

∂tN = P0 + ∂x(D∂xN),
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is subject to a transport coefficient that obbeys the fast dynamics of turbulence, i. e., D

scales with a turbulence field ε governed by timescales typical of micro-instability growth

rates γ. For transport barrier phenomenology, it is mandatory that the conditions for

increasing turbulence drive (let γ = ∂xN = N ′ be for simplicity) can, at some stage,

force a drop of ε itself. This happens within the frame of ExB shear suppression physics

[9] because, in the plasmas of interest here, the radial electric field shear will always

have a contribution from the radial derivative of the diamagnetic force. Let us assume

that N2 can be associated to a pressure term. The radial derivative of the pressure

gradient divided by N (a term representing the ExB velocity shear) would behave as

N ′′. Therefore, ε evolves according to the sum of a forcing γε = N ′ε, a non-linear

saturation term that we write as αε2 and a suppression term Ω = α2(N
′′)2/γ. This

expression for Ω ensures that the condition for turbulence suppression is that the growth

rate and the shearing rate are equal independently of the sign of the latter:

∂tε = (γ − αε − Ω) ε + Dεε
′′

The (constant) diffusivity in this equation limits spatial scales in ε. The parameter

α2 controls the strength of the suppression mechanism (via Ω). The equation can be

simplified by direct linearization with respect to N , N ′, N ′′, ε, ε′ and ε′′ considering

that perturbations in the second derivatives evolve faster than perturbations in first

derivatives. The resulting linear system -in an infinite domain- allows for propagating

solutions with velocity V ∝ N ′′ whenever Ω and γ are comparable (marginal state).

According to this, the second spatial derivative of the diffusive field dictates the direction

of propagating fronts. The previous analysis is very simple and, if at all, should be valid

in the first, linear stages of the development of marginal solutions. If, on the other hand,

the feature of preferred propagation direction remains during the non-linear stages, then

we should be able to find it making the system evolve in the marginal state.

Numerical calculations

The model of the previous section was formulated in planar geommetry. The following

examples are based on the same paradigm, but have added levels of complexity. In the

first case, we show the evolution of the ratio Ω/γ in cylindrical coordinates. An explicit

numerical scheme is used here. The calculations are done with parameters that make

the system stay in the marginal state, characterised by an effective competition between

driving and suppression mechanisms. The radial region 0.1 < r < 0.3 has N ′′ > 0 and

there the pulses propagate outwards (Fig. 1); but where there is a marginal region with

N ′′ < 0, the pulses propagate inwards (Fig. 2). In this second case, Ω is large enough in
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the region 0.65 < r < 0.8 (where N ′′ < 0) and a transport barrier developes (ε vanishes

in the region).

Figure 1: Time evolution of the

Ω/γ profile starting from a steady

state with N ′′ > 0. Values range

from zero (purple) to 0.5 or higher

(red).

Another calculation (Fig. 3) is performed with

real tokamak parameters (R = 1.5 m, a = 0.8 m,

BT = 4.8 T) and a rather complete transport model

where, aside from ε, there are evolution equations

for particle density, ion and electron temperatures

and poloidal magnetic flux. The same property

of propagation of the pulses towards the zones of

smaller gradients is observed. This calculation has

been done with the ASTRA transport shell [10].

A potential consequence of these results is that

there is a preferred location for the formation of

transport barriers: ExB velocity shear layers sided

by steeper gradients. Intuitively, if we consider the

pressure gradient to be the drive of turbulent trans-

port and the plasma is close to conditions of ExB shear suppression, the turbulent bursts

created by the reaction-diffusion system will tend to converge where there is a flattening

of the pressure profile. Such a region may be expected around rational values of the

safety factor.

Figure 2: Same as Fig. 1 for a case

where N ′′ < 0 in the region 0.4 <

r < 0.6. The term Ω overcomes γ

as of t ≈ 50 (arb. units).

It should be recalled, however, that for the dy-

namics of barrier formation to occur, the feed-

back mechanism that simultaneously increases gra-

dients and suppresses turbulence must be active.

Therefore, other transport mechanisms that limit

the thermodynamic gradients independently of the

level of turbulent fluid advection -like stochasticity

in the lines of force- can in turn limit the process of

barrier formation and sustainment. In any case, if

the paradigm proposed in Refs. 1 and 2 is to rep-

resent transport physics of magnetically confined

fusion plasmas, marginal states with propagating

bursts should be found. These bursts would show

preferred directions of propagation and here we sug-

gest that they should move towards regions of flatter turbulence-driving gradients.
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Figure 3: Evolution of the ratio Ω/γ in the frame of a tokamak transport system of
equations with ηi model of anomalous diffusion. The simulated plasma is driven to
marginality with 28 MW of on-axis heating power and a configuration of plasma current
that reverses the magnetic shear in the plasma core. A radial grid of 200 points in
the range 0 < r < a is used for the calculations. The arrows indicate the direction of
propagation of the pulses in Ω/γ.
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