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For flute oscillations to be stable in toroidal configuration with closed magnetic field

lines and with a zero rotational transform, µ , it is necessary and sufficient to satisfy

Bernstein-Kadomtsev (BK) condition [1,2]
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Here, p is the plasma pressure, 0γ  is the adiabatic exponent, ∫−= BdlU  is the label of the

equilibrium magnetic surface. For configurations with a magnetic well and decreasing

plasma pressure, 0<∇⋅∇ Up , the right-hand inequality in (1) holds, so that the problem is

to satisfy the left-hand inequality. Otherwise, for systems with a magnetic hill, 0>∇⋅∇ Up ,

the left-hand inequality in (1) holds, and the problem is to satisfy the right-hand inequality.

There exists a marginal stable profile, 0|~| γ−
Up , which reduces the right-hand inequality in

(1) to an identity. This possibility of MHD stabilization is the main subject of our study.

The assumption that the magnetic field lines are closed over the entire volume of a

confinement system is a theoretical idealization. In a real situation, the field lines are

unclosed because of the possible magnetic field distortions. In analyzing the MHD stability

of systems with closed magnetic field lines, it is logical to consider how it is affected by a

small distortion that makes the lines slightly unclosed.

For toroidal systems with a nonzero rotational transform, the Mercier criterion is

known. The Mercier criterion predicts that a system with a small shear and without a

magnetic well is unstable. Mikhailovskii and Skovoroda [3] showed that taking into account

plasma compressibility can substantially change the growth rate of MHD instability that

develops when the Mercier criterion is violated. Under an inequality similar to the right-hand

inequality in (1), the instability grows not at the rate of development of Alfven modes,

sA Lc /~γ , but at the rate of development of acoustic modes, ss Lc /~γ , which is

substantially slower at low β . Here sL  is the shear length. But the question of how the

instability growth rate behaves when the shear approaches zero remained open.
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We shall show that in ideal MHD approximation the increment remains nonzero in

the limit of vanishing rotational transform. The continuos proceeding to the limit 0=µ  will

be obtained taking into account finite Larmor radius effect.

1. Cylinder geometry

The familiar exact equation for ideal small radial displacements, ξ , in cylinder

geometry can be represented in the form
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Here 1−R  is the magnetic field line curvature, zk  is the wave number along the cylinder

axis, m  is the azimuthal mode number, and ϕ,zB  are the magnetic field components. The

plasma compressibility is explicitly accounted for by the third term in the expression for W .

As a model of a confinement system with poloidally closed magnetic field lines, we

use a straight cylinder in which the magnetic field lines have the only nonzero component

ϕB . In this case (other cases see in [4]), the effect of distortions that make the field lines

unclosed is modeled by a weak uniform magnetic field ϕBBz << . We consider 1<<β

plasma, and mode 0=m  (at 0=zB  longitudinal wave number 0|| =k  only for 0=m ).

Since BK condition (1) is fulfilled, 02 0 >+′
r

p
p

γ
, the growth rate is estimated to be

22
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2 ~ As ckck <<γ , and we can assume that χ>>2
zk  to obtain 0~,~ 11

22
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Since 2222
|| / BBkk zz=  and 0≠zk , we divide (2) by 2

zk  and arrive at the equation
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From (3) we obtain the following estimate for the upper limit of the increment, γ , at a fixed

wave number zk  [4]:
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We can see that the increment approaches zero as zB  approaches zero, and it increases with

zk . However, the product zz Bk  is restricted by the stabilization condition rpBk zz ′−~22 ,

which leads to the maximum possible growth rate Aγβ~  ( Aγ  is the usual flute mode

increment). In this approximation, for any small zB  we can find so large zk  to obtain the

finite increment of instability.

2. General geometry

We use the familiar ideal ballooning equations for small-scale modes
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Here ξ  and !⋅∇=X  are the normal component and divergence of displacement vector ! ,

⊥k  is the wave vector, bk  is the azimuthal component of ⊥k , [ ] bBkR ⊥
− ⋅×= k"B

1 , "  is

the vector of field line curvature, prime denotes the derivative with respect to the label of the

magnetic surface, ρ  is the mass density.

We shall use the magnetic coordinates ζβ ,,a  for magnetic field representation

[ ] aFa ∇−∇=∇×∇Φ′= νζπβπ BB 2,2 . (6)

Here µζθβ −= , Φ′Ψ′−= /µ  is rotational transform, θ  and ζ  are the angle Boozer

coordinates. The 0→µ  limit can be investigated at 0=′µ  approximation (very small shear

does not change the final conclusion). Using the Fourier transform of ξ  (and X )
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we obtain for almost-periodic function )(ζξm  the discrete spectrum mnkzn µ−= . In [4] it

was shown that "anti-Mercier", 1>>m , perturbations are the worst case for stability at

0→µ . For quasi-flute perturbations the system (5) gives the dispersion relation

( ) 01 22122
10 =++++

−
zzAzsz kkkkUU . (8)

Here 0U  and 1U  are the familiar values of magnetic well/hill and compression [3,4],

szs cLk γ~ , AzA cLk γ~ . When BK condition is fulfilled, 010 ≥+UU , ( 00 <U ) we obtain
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from (8) the condition of stability

0
20 Ukz −<<  or ( ) 0

20 Umn −<−< µ . (9)

At 0=µ  the flute perturbations, 0=n , are stable. The ballooning mode, 1=n , is unstable

at β , determined by the condition 10 >−U . At any 1<<µ  we can always find such 1>>m

that 1/~ <<mnµ , and we obtain the instability with maximal increment, determined by

relation 101max

2 UUUk zs +−= .

3. Account of finite Larmor radius

The finite Larmor radius effect leads to modification of equations (6):
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Here ρωω cib pk ′=*  is the diamagnetic drift frequency, RBM ωωω +=  is the magnetic

drift frequency, ρωω cibR Rpk= , ρωω ciBbB Rpk= , [ ] 21 BkBR bB ∇×⋅= ⊥
−

Bk . As in

Section 2 we can obtain the dispersion relation for quasi-flute perturbations. The analysis

shows the existence on instability only at the inequality
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 denotes the average values of drift and sound frequencies. At 0=n  the stability is

realized up to rotational transform (this is the lower estimation for 0≠n  also)
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Here a and 0R  are the minor and major radii of a torus, iρ  is the average Larmor radius.
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