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In this paper, the interaction of two co-propagating laser beams with crossed polarization in the underdense 

plasmas has been investigated analytically with the variational approach and numerically. The coupled 

envelope equations of the two beams include both the relativistic mass correction and the ponderomotive force 

effect. It is found that the relativistic effect always plays the role of beam attraction, while the ponderomotive 

force can play both the beam attraction and beam repulsion, depending upon the beam diameters and their 

transverse separation. In certain conditions, the two beam centers oscillate transversely around a propagation 

axis. In this case, the ponderomotive effect can lead to a higher oscillation frequency than that accounting for 

the relativistic effect only. The interaction of two beams decreases the threshold power for self-focusing of the 

single beam. A strong self-trapping beam can channel a weak one. 

Recently, we have investigated the interaction between two co-propagating laser beams with the same 

polarization directions in underdense plasmas, and found that two beams can merge into one beam or split into 

three beams [1]. Ren et al. have observed spiraling of the two beams with crossed polarization directions in 

particle-in-cell (PIC) simulations [2]. They also have studied this phenomenon analytically, where their coupled 

beam equations only include the effect of the relativistic mass correction. However, the ponderomotive force 

effect, which has a significant influence on the self-trapping of a laser beam [3], has been ignored. 

The coupled evolution equations for two laser beams with crossed polarization directions in underdense 

plasmas can be written as [3] 
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where a1 and a2 are the slowly varying vector potentials of the two beams normalized by mc²/e, respectively, the 

relativistic factor 2/)|||(|1 2
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1 aa --?i , the electron density )1Max(0,n 2i`ı-?  is normalized by 

the unperturbed plasma density n0. Here yyv /2tp? and  22222 // yx ••-••?ı`
with transverse coordinate 

x and y normalized by 
pc y/ , の is light frequency and )/4( 2

ep mnery ?  is the electron plasma frequency. At 

the weakly relativistic approximation, 4/)|||)(|1(1/ 2
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(1), we obtain the following coupled nonlinear equations 
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Approximate solutions of Eq. (2) can be obtained by using the variation method [2,4]. Firstly, we need to 

find a Lagrangian density Ld, where the Euler-Lagrange equations can reproduce Eq. (2) by minimizing the 

action Ð
¢

¢/

dxdyLd . Such a Lagrangian density is  
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ja is the complex conjugate, 
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as in Ref. [2], where the amplitude a0j, phase 
j0h , beam center (Xcj, Ycj), perpendicular momentum (kxj, kyj), 

radius of curvature Rj, and the spot size Wj are all real and are functions of  k only. Substituting the trial 

functions into Eq. (3) and integrating the Lagrangian density Ld in the xy plane, we obtain the reduced 

Lagrangian density Ð
¢

¢/

» dxdyLL d
r

2
. One can find the evolution equations of the beam parameters by 

Euler-Lagrange equations for the reduced Lagrangian density L : 

0/)/(/)/(/ 22 ?••-••/•• dvdvd %%% LddLddL , where く is any variational parameter for the laser beams. 

Varying jh , leads to the power conservation 0/)( 22

0 ?vdWad jj
. Varying Rj, one obtains Wj/Rj=dWj/dk. 

By varying Wj, the equations for the evolution of each beam spot size are given as 
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where )/()( 2
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j
j . The right hand side of Eq. 

(4) shows the effect of the beam interaction through the relativistic effect and the ponderomotive force. From Eq. 

(4), neglecting the right hand side, one obtains that the normalized threshold power of relativistic self-focusing 

for individual beams is reached when PjjPch32. On the other hand, let us consider the propagation of a weak 

beam two in the background of another powerful beam one with P2<<P1 and P2<<32. If the two beams 

propagate in co-axis, so that Xcj=Ycj=0, then one finds that beam two can be guided without diffraction through 

relativistic effect if the power of the beam one P1j8(1+W1
2/W2

2)2, which can be less than 32 provided W1<W2.  

By varying (kxj, kyj), it gives kxj+dXcj/dk=0, and kyj+dYcj/dk=0. By varying Xcj, one obtains  
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Fig. 1. Evolution of two beams with initial parameters: 

a01=a02=0.15, W01=W02= 220 , X01=-X02=12. circles: 

energy center of the beams from simulations, dashed line: 

theory including both the poderomotive and relativistic 

effects, dotted line: theory only including the relativistic 

effect. 

.
2

1

2

12

2

2

2
vv d

Xd
P

d

Xd
P cc /?                                             (5) 

Similar equations hold in the y direction. Eq. (5) shows that the beam centroids move like two particles with the 

mass proportional to their powers. Momentum conservation ?- 2211 cc XPXP %% constant can be obtained from 

Eq.(5). In a simplified case: P1=P2=P and W1=W2=W, the motion equations of the two beams become 
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where ┏Xc=Xc1-Xc2. Similar equations hold in the y direction. As compared with what obtained in Ref. [2], 

new terms at the right hand side of Eq. (6) appear owing to the introduction of the ponderomotive force effect in 

Eq.(2). In the factor (3/4+1/W2-d2/2W2), the relativistic effect contributes only 1/4 and the ponderomotive force 

contributes (1/2+1/W2-d2/2W2). This suggests that the relativistic effect always contributes to the beam 

attraction. While the ponderomotive force can play the role for beam attraction only for a transverse separation 

between beam centers d<(2+W2)1/2, beyond which it plays the role for beam repulsion. Physically, the 

ponderomotive repulsion is caused by the density increase in space between two beams, which leads to a low 

refractive index there. The beam repulsion can overcome the relativistic beam attraction when d>(2+3W2/2) 1/2. 

To account for more general cases, we solve the coupled equations (1) numerically. A rectangular simulation 

box is used in the x-y plane. The input beams are launched parallel to each other along the z-direction, and 

without initial perpendicular momentums. The transverse beam profiles are in Gaussian with 

ai=a0jexp{-[(x-X0j)
2+y2]/W0j

2}. In the whole simulation processes, energy center <x>j of the two beams are 

tracked, where <x>j Ð
¢
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Figure 1 illustrates the evolution of the two beams when a01=a02=0.15, W01=W02=20 2 , X01=-X02=12. 

Even though the corresponding power for single beam is 

P=18, much less than Pc, the two beams are still trapped 

while propagating. As Fig. 1 shows, the two beams 

attract, intersect, and separate, like a damped oscillation 

with an increasing oscillation frequency. Based on the 

assumption that both beams always have constant 

W=20 2 , from Eq. (5), one obtains that the two 

Gaussian beams have a non-damping and sinusoidal 

oscillation, as shown with the dashed line in Fig. 1. The 

oscillatory period is T=2244. The dotted line in Fig. 1 

show theory prediction without ponderomitive effect, 

and the corresponding oscillatory period is T=3098. The 

theory better agrees with the simulation when including 

ponderomitive effect. The two beam width decreases to 

10 and beam amplitudes increase to 0.39 in k=2000. Eq. 

(5) also predict that oscillatory frequency will increase 

when the beam amplitudes increase and their distance 

decreases. For a1,2=0.39, W1,2=10, d=4.5, the oscillatory 
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period T=207, which is consistent with the accelerated 

oscillation in R[1750,2000]. 

Figure 2 illustrates another example for beam 

evolution when a01=a02=0.5, W01=W02=6.35 2 , and 

X01=-X02=5. The beam widths are almost constant in the 

whole process. The power of one beam is 20.2. It is clear 

to see that the two beams have a oscillatory motion and 

the oscillation period is about 514. Our analytical 

solution from Eq. (6) predicts a oscillation period of 

T=349. This large difference is probably due to the 

weakly relativistic approximation and the ideal 

Gaussian beam used in the above variational approach. 

Figure 3 displays the interaction between the two 

beams when a01=1, a02=0.2, W01=W02=3.9 2 , X01=0, 

X02=-3. Note that P2=1.2 is much less than P1=30.4. The 

large power means large mass when one takes an 

analogy between the laser beams and particles. It is 

expected that the beam with a small power will twist 

along the beam with a large power. As shown in Fig. 3, 

the beam one is almost transversely immobile, but the 

beam two oscillate around beam one, with a period of 

about 200. Meanwhile, the beam two remains to be 

trapped without significant spreading even though its 

power is much lower than the self-focusing threshold. 

This is also due to the focusing effect of the beam one as 

also discussed analytically following Eq. (4). 

 

In summary, the interaction of two co-propagating laser beams with crossed polarization in the underdense 

plasma has been investigated analytically and numerically. It is found analytically that the relativistic effect 

always plays the role of beam attraction, while the ponderomotive force can play both the beam attraction and 

beam repulsion, depending upon the beam diameters and their center separation. In certain conditions, the two 

beam centers oscillate transversely around a propagation axis. In this case, the ponderomotive effect can lead to 

a higher oscillation frequency than that accounting for the relativistic effect only. The interaction between two 

beams decreases the threshold power for self-focusing of the single beam. A strong self-trapping beam can 

channel a weak one. 
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Fig. 2. Evolution of two beams with initial parameters: 

a01=a02=0.5, W01=W02= 235.6 , X01=-X02=5. 

Fig. 3. Evolution of two beams with initial parameters: 

a01=1, a02=0.2, W01=W02= 29.3 , X01=0, X02=-3. 

31st EPS 2004; Z.-M.Sheng et al. : Interactive dyanmics of two copropagating laser beams in underdense plasmas 4 of 4


