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Abstract.  The impact of field line label and ballooning parameter on the infinite-n

ballooning stability of compact, quasi-poloidal symmetric stellarators is investigated.

Previously, the ballooning stability of quasi-poloidal stellarators has been examined for

free-boundary, moderate ! (! >4%) plasmas in the Quasi-Poloidal Stellarator (QPS) [1].

These previous calculations were performed with ballooning parameter, ∀k = 0  and field

line label ∀ = 0 .  Here, these results are extended to include other possible values of ∀k

and ∀.  First ballooning instability !-limits for these devices are well described by the

∀,#k = 0 results.  Changing either ∀k or ∀ increases the ! required for first instability.

The ! values required to enter second ballooning stability are higher when ∀k , ∀ ! 0.

I.  Introduction

Access to regions of second stability in axisymmetric devices makes possible

advanced tokamak operation.  Exploration of regions of second stability in

three–dimensional configurations could allow for high-!  operation in a compact

stellarator.  Here, ! is the ratio of the plasma pressure to the magnetic pressure, ! = p/B2,

and #!∃ indicates the volume average !.  A number of previous studies of ballooning

modes in stellarators [1,2] have focused on a narrow range in parameter space, namely

∀,#k = 0 .  The ballooning parameter is given by ∀k = k# /k∃  and the field line label is

∀ = #∃ %& .  Here, k∀  and k∀  are the components of the wavenumber perpendicular to the

magnetic field and % is the rotational transform.  The limitation in the range of ∀k , ∀ in

previous studies was motivated by both computational limitations and the result of limited

testing that indicated these values (i.e., ∀,#k = 0 ) had the lowest !-limits for stability.

The focus of this work is the impact of ballooning parameter and field line on ideal

MHD ballooning stability of free-boundary equilibria in the Quasi-Poloidal Stellarator
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(QPS), a quasi-poloidal, compact stellarator.  For more details on the QPS configuration,

see [3].  Previously, it was shown that a region of second ballooning stability (i.e., a

region of interchange stability for large pressure gradients) does exist for QPS with

∀,#k = 0   [1].  Here, the impact of field line and ballooning parameter on both the first

stability boundary and second-stability access in QPS is explored.

II.  Ideal MHD Ballooning Stability

Ballooning modes are short perpendicular wavelength ( k∀ >> k||), pressure-driven

modes, localized to regions of bad curvature along a field line.  The plasma displacement

is taken to be of the form ∀ = ˆ ∀ r,#( )exp iS ∃,%( ) /# + &t[ ]  where ˆ ∀ r,#( )  is slowly-varying,

S ∀,#( ) is the eikonal, and ∀ = #∃ %&  is the field line label.  The perpendicular

wavenumber is then

       k ∀ #S ∃ ,%( ) = k%#%+ k∃#∃ = k% #%+&k#∃( )         (1)

where k∀ = #S ∃,∀( ) /#∀ , k∀ = #S ∀,∃( ) /#∀ , and ∀k = k# /k∃  is the ballooning parameter.

Note that the ballooning parameter is often written as ∀k = kq /k#  where kq = ∀S q,#( ) /∀q

and q =1/∀  is the safety factor.  Applying the ballooning formalism to the MHD energy

equation leads to the ballooning equation [4], an eigenvalue equation along a field line

coordinate, ∀ :

(2)

The coefficients c1, c2, and c3 depend on the field line as determined by the choice of ∀.

The perpendicular wavenumber only appears in the coefficients c1, c2, and c3 in the form

of the ballooning parameter as: ∀ #∀k .  Previously [1,2] it was shown that quasi-poloidal

stellarators exhibit a region of second ballooning stability for ∀,#k = 0 .  In the following,

these results are expanded to a range of values for ∀  and ∀k .

III. Impact of Ballooning Parameter and Field Line on First Ballooning Stability

For the reference configuration, a quadratic pressure profile, p(S) = p0(1 – s)
2
, was

chosen for simplicity.  Infinite-n ballooning mode stability was analyzed using the

COBRAVMEC stability code [5].  The following are parameter space plots of the

ballooning growth rates as a function of flux coordinate s, field line label ∀ (here mapped

to &), and ballooning parameter ∀k  (here mapped to ∋).  Below #!∃ = 2%, the plasma is
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ballooning stable at all s, ∀, ∀k .  As #!∃ is raised above 2%, the plasma crosses the first

instability threshold for infinite-n ballooning modes.  Figure 1 shows a contour plot of

ballooning growth rates for a QPS plasma just above the stability boundary (#!∃ = 2.1%).

Figure 1.  Ballooning growth rates for #!∃ = 2.1% as a function of s, ∀ , ∋ k, for (a) 3

toroidal cuts and (b) the ()A = 0.01 surface.  Negative values (blue) indicate stability.

(Note that here and in Figure 2, ∀  is mapped to ∀  and ∀k  is mapped to ∀ ).

The results for ∀,#k = 0  accurately describe the first stability boundary for infinite- n

ballooning modes.  It is at these values that the plasma first goes unstable.  In addition,

only a small region of field lines near ∀ = 0  are unstable for values of #!∃ near the stability

boundary (#!∃ < 3%).

Figure 2.  Contours of infinite-n ballooning growth rates for (a) #!∃ = 6.03% and (b) #!∃ =
7.52% on the s = 0.675 surface.  Blue regions indicate ballooning stable regions.

IV. Impact of Ballooning Parameter and Field Line on Second Ballooning Stability

For ∀,#k = 0 , a large region of the plasma is in the second ballooning stability

regime for #!∃ > 6% [1].  Figure 2a shows a contour plot of ballooning growth rates on the

s = 0.675 surface for a QPS plasma near the onset of second stability (#!∃ = 6.03%).  The

plasma is still in the first instability regime for a wide range of ∀k  and ∀ .  At higher !

more of the plasma is in the second stability regime as shown in Figure 2b for #!∃ =

  (a)  (b)

  (a)
 (b)
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7.52%.  Parameter space plots of the ballooning growth rate surfaces (a) ()A = 0.5, (b) ()A

= 1.0,, and (c) ()A = 1.5 for a #!∃ = 7.52% are shown in Figure 3.  These surfaces are

irregular torii and not cylinders [4].

Figure 3.  Contours of constant infinite-n ballooning growth rates as a function of s, ∀, ∋k.

for (a) ()A = 0.5, (b) ()A = 1.0,, and (c) ()A = 1.5 for a #!∃ = 7.52% QPS case.

V. Conclusions

The first stability boundary for infinite-n ballooning modes in QPS has been tested

over a wide range of ballooning parameter and field line labels.  Near the first instability

threshold, the plasma first goes unstable at∀,#k = 0 , and only over a narrow range of field

lines.  At #!∃ values high enough to enter second stability for infinite-n ballooning modes

at∀,#k = 0 , more of the plasma remains first unstable at other values of ∀ and ∋k.

A primary open question is how do these local mode solutions over a range of field

lines and ballooning parameter relate to global ballooning modes?  Results from an

analysis of finite-n ballooning modes (up to n =19) using the Terpsichore code [4] indicate

that QPS plasmas can be stable to #!∃ > 5% [1].  Construction of global modes from the

local mode solutions may increase the range of #!∃ for which ballooning modes are stable.
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