Ion temperature gradient modes in the presence of a sheared ion flow

B. Coppi 1,2, E. Lazzaro 2, M. Lontano 2, C. Marchetto 2,3

1 M.I.T., Cambridge, USA
2 Istituto di Fisica del Plasma, C.N.R., EURATOM-ENEA-CNR Ass., Milan, Italy
3 INFM, Parallel Computing Initiative, Italy

Abstract

Recently, a theory of spontaneous momentum generation due to the toroidally asymmetric excitation of ion temperature gradient (ITG) modes in the presence of a radial profile of toroidal ion velocity has been formulated [1]. We present a systematic study of the dispersion equation relevant to the electrostatic slab modes driven by an ITG perpendicular to a uniform magnetic field, in the presence of an inhomogeneous equilibrium fluid velocity of the ions.

Introduction

Sheared electric drift poloidal rotation in magnetically confined plasmas seems to play a major role in the suppression of radial energy leakage, thus inducing enhanced confinement regimes of operation [2]. The pattern of the electric drift flow is strictly related to the general problem of spontaneous momentum generation and of its transport within a magnetized plasma in axisymmetric toroidal plasmas, which is also in a close relationship with the physics of accretion disks. Toroidal plasma rotation is frequently characterizing auxiliary heated plasmas [3], while poloidal flows can be produced by IBW [4]. Recently a theory of spontaneous momentum generation due to the toroidally asymmetric excitation of radially localized ion temperature gradient (ITG) modes in the presence of a radial profile of toroidal ion velocity has been formulated [1]. The resulting radial transport of the angular momentum during external plasma heating is in qualitative agreement with the plasma dynamics observed in Alcator C-MOD [3]. In this work we present a detailed investigation of the relevant dispersion relation derived in the frame of the slab two-fluid drift model [5], where equilibrium inhomogeneous ion velocities are introduced, \(\mathbf{U}_\parallel(x)\hat{\mathbf{z}} \) parallel to the ambient magnetic field, \(\mathbf{B}_0 = B_0\hat{\mathbf{z}} \), and \(\mathbf{U}_\perp(x)\hat{\mathbf{y}} \) perpendicular to both \(\mathbf{B}_0 \) and to the unperturbed density and temperature gradients, \(\nabla \parallel \hat{\mathbf{x}} \). The objective is to investigate the role of the asymmetry, introduced by the sheared flows, in the excitation of waves with opposite values of \(k_\parallel/k_\perp \), capable of affecting the anomalous transport of angular momentum.
The electrostatic dispersion relation

The linearized two-fluid equations in the drift approximation, in a plasma slab non uniform in the x direction, where the electrostatic potential perturbation is assumed to be localized around $x=x_0$, are written as:

\[\omega \tilde{n}_k = n k y \tilde{v}_{l,k} - \frac{c}{B_0} n' k_z \tilde{\varphi}_k \]
(1)

\[M n \tilde{v}_{l,k} = q n k\left(1 - \frac{k_y U'_y}{k_\parallel \Omega} \right) \tilde{\varphi}_k + k_\parallel \tilde{p}_k \]
(2)

\[\omega \tilde{p}_k = -\frac{c}{B_0} p' k_z \tilde{\varphi}_k + \gamma p k_\parallel \tilde{v}_{l,k} \]
(3)

\[\frac{n}{T_c} = \frac{c \tilde{q}_k}{A} \]
(4)

\[n = n_i = \frac{n_s}{Z} \]
(5)

Here, the 2D space Fourier transform

\[\tilde{A}(x,y,z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{A}_k(x,t)e^{i(k_x x + k_y y + k_z z)} \]
(6)

has been introduced, where the time dependence of each Fourier coefficient is in the form of $\tilde{A}_k(t) = \tilde{A}_k(t)e^{-i\omega_k t}$, with the complex frequency $\omega_k = \omega_k^R + i \omega_k^I$, $\omega_e = \omega_k^R$, and $\tilde{A}_k(x) = \tilde{A}_k^c(x)$. Moreover, in Eqs.(1-4) the x-dependent frequency $\omega(x) = \omega_k^R - k_y U'_y(x) - k_z U'_z(x)$, the perpendicular $k_\perp = k_y$ and the parallel $k_\parallel = k_z$ components of the wave-vector, have been defined. Finally, $n_i(x), T_e(x), p_a(x) = n_i(x) T_e(x)$ are the density, temperature and pressure of the a-species, respectively, and γ is the adiabatic index of the ions. The apex indicates the total differentiation with respect to x. From Eqs.(1-5) the dispersion relation follows [1]

\[1 = \frac{k_i}{\omega} \frac{v_{se}}{\omega} - D_B (\frac{k_i}{\omega})^2 (U'_y + \frac{k_i}{\omega} p'_i - \frac{k_z}{k_\parallel} \Omega) \left(1 \right. \left. \omega - \frac{k^2_\perp v^2}{\omega^2} \right) \]
(7)

where $v_{se}(x) = -D_B n', D_B = c T_e / e B_0$, $\rho_i(x) = n_i(x) M_e$, $\Omega = q_i B_0 / M_e$, $v_i = (T_i / M_i)^{1/2}$, $q_i = Ze$. Eq.(7) gives a cubic equation in ω, which can be put in the approximate form

\[\omega^3 - \gamma k_i c^2 \left(1 - \frac{Z}{\gamma} \frac{k_i U'_y}{\Omega} \right) \omega + Z k_i c^2 \omega_{se} = 0 \]
(8)

for $\eta_i = (\ln T_i)' / (\ln n_i)' > 1, \tau = T_i / T_e > 1, \frac{\omega_{se}}{\omega} << 1$. In Eq.(8), $\omega_{se}(x) = k_i c T_i / (Ze b_0)$. By neglecting the U'_y-term in Eq.(8), we recover the dispersion equation considered by Coppi et
al. in 1967 [5]. From inspection of Eqs.(7,8) it is seen that a non-zero value of k_\parallel introduces the effects of the inhomogeneous ion population, through its pressure and parallel velocity profiles, which can stabilize or destabilize the system. Moreover, and most important to our scopes, the U_i-term introduces an odd dependence on k_\parallel. According to the standard notations [6], there is an unstable solution of Eq.(8) if

$$\Delta = q^3 + r^2 = \frac{Z^2\tau^2}{4} (k_\parallel c_1 c_s)^3 \rho_s^2 \left[k_{T_i} - \left(\kappa_{T_i} \right)^2 \right] > 0,$$

where $\kappa_{T_i} = -(\ln T_i)'$, and

$$\kappa_{T_i} \equiv \kappa_{T_i}^c = \frac{2}{\gamma^{3/2} Z} \frac{U_i}{\Omega_c} \frac{k_\parallel \Omega_c}{\rho_s} \left(\kappa_{T_i} \right)^1 \left(\kappa_{T_i} \right)^3$$

is a “critical” ion temperature gradient; $c_s = (T_s)^{1/2}$, $\rho_s = c_s/\Omega_c$ and $\kappa_{T_i}^c = \frac{2}{\gamma^{3/2} Z} \frac{U_i}{\Omega_c} \frac{k_\parallel \Omega_c}{\rho_s}$ refers to the case where no parallel velocity shear is present.

Note that κ_{T_i} can be made equal to zero with a suitable choice of U_i. For $|1 - \left(\kappa_{T_i}^c/\kappa_{T_i} \right)^2| << 1$, the unstable mode has $\omega_k = \left(\frac{Z}{2} \right)^{1/3} (k_\parallel c_s)^{2/3} \omega_{T_i}^{1/3} \approx \left(\frac{\gamma}{3} \right)^{1/2} \text{sign}(k_\parallel) |k_\parallel| v_{ti} \left(1 - \frac{Z}{\gamma} \left(\frac{k_\parallel}{\Omega_c} \right)^{1/2} \right)$ and

$$\gamma_k \approx \frac{Z^{1/3} \gamma^{1/6}}{3^{1/2}} \left(k_\parallel c_s \right)^{2/3} \omega_{T_i}^{1/3} \frac{\left(k_{T_i} \right)^{1/2}}{\left(\kappa_{T_i} \right)^{1/2}} - 1.$$

Consequences of k_\parallel/k_\perp symmetry breaking

Let us consider a plasma region around $x = x_0$ where $U_i' > 0$. Let’s choose two modes with the same $k_\perp > 0$ and opposite k_\parallel, that is, $k_{\parallel 1} = -k_\parallel < 0$ and $k_{\parallel 2} = k_\parallel > 0$. Assume that at $x = x_0$ mode 1 is marginally stable, that is $\gamma_{k_1} = 0$, due to the fact that locally $\kappa_{T_i} \equiv \left(\kappa_{T_i}^c \right)_1$. We can use $\left(\kappa_{T_i}^c \right)_1$ to calculate Δ_2 relevant to mode 2; it takes the form

$$\Delta_2 = \frac{2Z}{3} k_\perp k_\parallel c_s^6 \frac{U_i}{\Omega_c} \left[3\gamma^2 \tau^2 + \frac{Z^2}{k_\perp^2} (k_\parallel c_s)^{2/3} \left(\frac{U_i}{\Omega_c} \right)^2 \right] > 0,$

corresponding to an unstable solution. For small values of the sheared parallel ion velocity, that is $\frac{k_\parallel}{k_\perp} \frac{U_i}{\Omega_c} << \frac{\gamma\tau}{Z}$, we get

$$\omega_k^R \approx -\left(\frac{\gamma}{3} \right)^{1/2} \frac{\left(k_\parallel c_s \right)^{2/3}}{\omega_{T_i}^{1/3}} \text{ and } \gamma_k \approx \left(\frac{2Z}{3} \right)^{1/2} \left(k_\parallel c_s \right)^{2/3} \left(\frac{U_i}{\Omega_c} \right)^{1/2},$$

thus being

$$\frac{\gamma_{k_2}}{\omega_{k_2}^R} << 1.$$

In the opposite limit, for $\frac{k_\parallel}{k_\perp} \frac{U_i}{\Omega_c} >> \frac{\gamma\tau}{Z}$, putting $\sigma_0 = \left(\left(2^{1/2} + 1 \right)^{1/3} \pm \left(2^{1/2} - 1 \right)^{1/3} \right)/2,$
A quasilinear flux of parallel ion velocity in the x-direction is associated with waves propagating in the (y,z) plane. For a spectrum of growing modes, i.e. with $\gamma_k > 0$ (as it is the case for wave 2), and in the limit $k^2 U''_i / |\sigma_k|^2 << 1$, the flux takes the form [1]

$$\Gamma_{x,v_{\parallel}} = \rho_1 \langle \bar{v}_{Ex} \bar{v}_{ii} \rangle = -\frac{\rho_1}{2\pi B_0} \int_{-\infty}^{\infty} \, dk_{\perp} \gamma_k c_2 k^2 |\sigma_k|^2 \frac{k_{\parallel}^2}{|\sigma_k|^2} \bar{v}_k \frac{e^{2\gamma i}}{2} \left(U''_i + 2 \frac{k_{\parallel}^2}{|\sigma_k|^2} \frac{p_i'}{k_{\parallel}} - \frac{\bar{k}_i}{k_{\parallel}} \frac{k_{\perp}}{\Omega_c} \right)$$ \hspace{1cm} (9)

For $U''_i = 0$, waves with positive and negative k_{\parallel} are likely to be excited with the same growth rate. In this situation, Eq.(9) shows that there is a balance between quasilinear momentum fluxes, inward and outward, brought out by different components of the wave spectrum, and no net momentum transport in x takes place. On the contrary, if for example $U''_i > 0$, the situation can occur in which only modes with $k_{\parallel} > 0$ are excited, (that is, waves of type 2). Then the integrand in Eq.(9) is no longer an odd function of k_{\parallel}, the radial (x) flux of parallel momentum associated with waves having $k_{\parallel} / k_{\perp} < 0$ (definitely inward for $p_i' < 0$ and $U''_i = 0$) is suppressed, while that produced by waves with $k_{\parallel} / k_{\perp} > 0$ is non-zero. Momentum flux can be made inward for sufficiently large values of $U''_i > 0$. Indeed, for $|\bar{v}_k |^2 = \delta(k_{\perp} - k_{\parallel}) \left[I_1 \delta(k_{\parallel} + \bar{k}_i) + I_2 \delta(k_{\parallel} - \bar{k}_i) \right]$, with $\gamma_{-v_{\parallel},0} = 0$, Eq.(9) becomes

$$\Gamma_{x,v_{\parallel}} = -\frac{cZ \epsilon_0 k_{\parallel}^2}{2\pi B_0} \frac{\gamma_k}{|\sigma_k|^2} e^{2\gamma i} \left[4 \frac{U''_i}{\Omega_c} - \frac{4 \gamma / \sqrt{3} / \sqrt{3}}{Z} \frac{k_{\parallel}^2 c_3^2}{|\sigma_k|^2} \frac{\sigma_{R}^{2}}{Z} \left(1 + \frac{Z}{\gamma \tau} \frac{k_{\parallel} \Omega_c}{k_{\parallel}} \right) \frac{k_{\parallel}^2}{|\sigma_k|^2} \right]$$ \hspace{1cm} (10)

where the index “k” means $(\bar{k}_i,k_{\parallel})$. Considering the minus sign and the square brackets only in Eq.(10), we obtain that for $(k_{0}/|\bar{k}_i|)U''_i / \Omega_c << \gamma \tau / Z$, $\Gamma_{x,v_{\parallel}} \propto \left[4 \gamma \tau / (3Z) - 1 \right] |\bar{k}_i| / k_{\parallel} > 0$, and for $(k_{0}/|\bar{k}_i|)U''_i / \Omega_c >> \gamma \tau / Z$, $\Gamma_{x,v_{\parallel}} \propto -U''_i / \Omega_c < 0$.

Part of this work has been supported by the “Short Term Mobility Programme” of C.N.R.