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          Alfvén instabilities driven by the energetic ions were observed in many experiments 

on stellarators.  Theory predicts that they can arise also in reactor plasmas [1].  The 

destabilization of various Alfvén eigenmodes (AE) occur when the drive produced by the 

energetic ions exceeds the wave damping.  Therefore, it is of importance to investigate not 

only the energetic particle drive (which was done in Ref.[1]) but also various damping 

mechanisms.  To study one of them – the collisional damping on electrons – is the purpose 

of this work.  The mentioned damping can play an important role in tokamaks, which was 

shown for the Toroidicity-induced Alfvén Eigenmodes (TAE).  The role of the collisional 

damping in stellarators is not clear because it is not studied for stellarator plasmas yet.  On 

the other hand, various AEs associated with absence of the axial symmetry of the magnetic 

configuration do exist in stellarators.  Because of this, in many cases even rough estimates 

of the collisional damping cannot be done using results obtained for tokamaks.  

Furthermore, one can expect that a new physics of the collisional damping is involved in 

stellarators.  The matter is that the collisional damping is determined mainly by the barely 

trapped particles, which are subject to the collisionless orbit transformations.  

          We begin with the simplest case when the equilibrium magnetic field, B0, is 

]cos)(cos)(1[0 ηεθε rrBB ht −−= ,                                                                                   (1) 

where (r, θ, ϕ) are the flux coordinates, B is the average magnetic field at the magnetic 

axis, εt is the magnitude of the toroidal modulation, εh is the magnitude of the helical ripple, 

ϕθη N−=  is the ripple phase, and N is the number of field periods.  We assume that the 

following two conditions are satisfied.  First, we assume || N−<< ιι , with ι the rotational 

transform, which means that θ remains nearly constant during the motion  along the 

magnetic field within a ripple.  Second, we take 1|)|(/ <<− Nht ιειε .  In this case, the 

toroidicity of the magnetic field can be considered as a perturbation to the sinusoidal 

symmetry of the helical ripple well, so that only particles localized in this wells satisfy the 
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condition 10 2≤≤ κ , whereas non-localized particles are locally passing and characterized 

by 12>κ .  Here κ is the trapping parameter given by 
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where Ε, µp is the particle energy and magnetic moment, respectively.  In contrast to 

tokamaks, κ is not a constant of the motion, allowing for the collisionless orbit 

transformations between the locally trapped states and locally passing states: 
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where 
O

.. denote bounce averaging, rrBecrBrc hhE ∂∂Ε=Ω∂Φ∂−=Ω /)/(,/)/( ε , with 

Φ the ambipolar potential, and K, E are complete elliptic integrals. 

          We use the linearized drift kinetic equation for the perturbed electron distribution 

function 
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where 
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cMeBB /0=ω  with M the particle mass, FM  is the equilibrium Maxwellian distribution, 

C(f) is the collisional term, and spatial derivatives are taken at constant Ε, κ2. 

           In terms of the potentials ζ, ψ defined by 
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 the perturbed distribution can be split into 

the adiabatic part and non-adiabatic part: 
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Substituting Eq. (4) into Eq. (3), after some manipulations we obtain the following equation 

for the non-adiabatic part of the distribution function fna: 
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where m, n are toroidal and poloidal mode numbers, respectively. Due to the conditions 

}/,/max{ 2
|| hedtdv ενκω >>>>∇•
E

with νe the electron collision frequency, Eq.(5) can 

be solved perturbatively. With boundary condition fna=0 at the locally trapped – locally 

passing boundary, a solution can be written as: 
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where θ0 is the poloidal angle of the orbit transition determined by κ2
(θ0)=1, and 

21 κξ −≡ .  Now we proceed to a more realistic magnetic configuration, relevant to the 

Wendelstein-line stellarators. Then 0B  contains more Fourier harmonics, the mirror 

harmonic, εm, being dominant.  Assuming that εm weakly depends on r,. we can easily 

generalize the electron response given by Eq. (6): the mirror harmonic affects only the 

fraction of the localized particles, therefore, we replace 4/122 )( hmh εεε +→ ; in addition, 

O
dtd /2κ  should be modified to take into account diamagnetic precession of the 

localized particles. 

          The damping rate can be calculated perturbatively by including the dissipative part of 

the transverse current caused by the wave-particle interaction to the corresponding vorticity 

equation.  In general, this requires a numerical calculation.  However, simple expressions 

can be obtained for the modes localized near the radius where two cylindrical Alfven 

branches (m, n) and (m+µ , n+νN) intersect, i.e., in the high mode number limit (here µ ,ν 

are the coupling numbers).   

 We revealed two regimes relevant to stellarators: (a) when the collisionless orbit 

transformation plays an important role [ 2/1*2 )(/ ωνκ eff
O

dtd >> , where 
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heeff
OO

Kdtddtd εννκκκ /,)(// 2*2 ≡≡ ]  (b) when the role of the orbit 

transformations is negligible [ 2/1*2 )(/ ωνκ eff
O

dtd << ]. 

 In the regime (a) we obtain for the damping rate: 
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where )(ˆ,)3/2,1(];)3/8(,1[ 2,1
2

2,1 Thh =ΕΩ=Ω=Κ=Κ == µν π , and all the quantities 

dependent on the radial coordinate are taken at the point r0 determined by the equation 

),,(),,( 0||0|| rNnmkrnmk νµ ++−= , i.e., the point where two cylindrical branches of 

Alfven continuum intersect.  Note that when collisions are very weak, the damping rates 

given by Eqs. (7), (8) are almost independent on the collision frequency. 

          In the regime (b) the damping rates take the form similar to those for the 

axisymmetric plasmas  
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             Let us evaluate the damping rates of various AEs in the Helias reactor.  In this case, 
only the regime (b) is relevant to the thermal electrons and, thus, the effect of the orbit 
transformations on the collisional damping is negligible.  This implies that we have to use 
Eqs. (9), (10).  We consider the modes localized  at r/a =0.3-0.5, where Te ~ 10 keV, ne ~ 

2×10
14

cm
-3.  Calculating damping rates and comparing them with corresponding growth 

rates γα obtained in Ref.[1], we obtain: 
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 and 1/|| >αγγ e  for HAE22 , HAE21 , and EAE . 

 Acknowledgements. The work is carried out within the Partner Project Agreement  
P-034d between Science and Technology Center in Ukraine, Institute for Nuclear Research, 
and Max-Planck Institut für Plasmaphysik. 
 
[1] Ya.I. Kolesnichenko et al., Phys. Plasmas 9, 517 (2002).  

31st EPS 2004; V.S.Marchenko et al. : Collisional damping of the Alfven eigenmodes in stellarators 4 of 4


