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I. Introduction

The CAS3D code solves the linear MHD stability problem for 3D equilibria in the presence of
an arbitrarily shaped multiply-connected, ideal or resistive wall. For tokamak stability studies
2D codes as GATO [1], NOVA [2], CASTOR [3], MARS [4] have been widely used. They
are restricted to axisymmetric wall con�gurations. The VALEN code [5] allows the treatment
of a multiply connected wall, but the vacuum (VALEN) and plasma(DCON) contributions to
the eigenmode are not computed in a fully self-consistent way.

The 3D MHD stability CAS3D code [6] was initially developed to study internal and external
modes of stellarator-symmetric con�gurations without a conducting wall. The present gener-
alized version can be applied to arbitrary 3D equilibria without any symmetry constraint. Two
new versions of the vacuum part have been added: For a closed wall surrounding the plasma,
Laplace's equation for the magnetic potential has been solved by a Fourier method. A �nite
element method has been applied to treat cases with multiply-connected perfectly conducting
or resistive wall con�gurations. The paper is organized as follows. In Section II the �nite
element vacuum code is sketched. In Section III stability calculations are presented.

II. The Vacuum Contribution

The linear theory of ideal MHD stability can be formulated in variational form.
The contribution of the vacuum region is given by

Wvac =
1
2

�

Sp

d f (n � x)(B � B0)

with plasma-vacuum interfaceSp, displacement vectorx(r ; t) = egt x(r ), equilibrium mag-
netic �eld B0, and exterior normaln. The perturbed magnetic �eldB in the vacuum region
has to satisfy:B = Ñ � A; Ñ � (Ñ � A) = 0; Ñ � A = 0 with boundary conditions forA in
case of an ideal conducting wall

n � A =
�

� (n � x)B0 on Sp (plasma-vacuum interface)
0 on Sw (conducting wall )

:

In case of a thin resistive wall the boundary condition follows from Faraday's and Ohm's law:
Ñ � E + ¶B

¶t = 0; sE = J: Assuming that the perturbed quantities vary asegt one gets with
jw the current on the resistive wall,s the conductivity and d the wall thickness

n � (Ñ � jw) = � sdg n � B on Sw(resistive wall):



The vector potentialA can be generated by surface currentsj p; jw on the plasma-vacuum
interface and the conducting wall:
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:

The surface-currents have to be determined such that the boundary conditions forA onSw and
Sp are ful�lled. For a �nite element problem it is advantageousto use a variational method.
One introduces the functional [7]
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wheren � Aext = ( n � x)B0, B0 = Ñs� Ñ(F0
P v � F0

T u) andu;v are magnetic coordinates.

An ansatz for a divergence-free surface current is given byj p = n � Ñf p; jw = n � Ñf w;
wheref p; f w are current-potentials. A general Ansatz forf p is given by

f p = Jp u+ Ip v + f �
p(x(u;v)) ;

wheref �
p(x(u;v)) is a single-valued function. The secular terms with the net-toroidal(net-

poloidal) currentsJp,(Ip) play a role only for them= 0;n = 0 mode.
VaryingL with respect tof p andf w one obtains the above given boundary conditions.

For the �nite element procedure the surfaces are discretized into triangles:
x = x1 + a x21+ b x31; 0 < a + b < 1; xik = xi � xk; i;k = 1;2;3

The current densityjD on each triangle is assumed to be constant:

jD =
f 1x23+ f 2x31+ f 3x12

jx21 � x32j

where thef i are the values of the current potential at the vertices of thetriangle.
Varying the discretizedL with respect to thef i one gets a set of linear equations for thef i .

With the Fourier expansions of the normal component ofx: xs = x � Ñsandf p

xs = å
m;n

x̂s
mnsin2p(mu+ nv) + x̂c

mncos2p(mu+ nv);

the vacuum matrix can be written as

Wvac = 2p2 å
m;n;m0;n0

(nF0
T + mF0

P)( x̂s
mn; x̂

c
mn)

�
Wss

mn;m0n0 Wsc
mn;m0n0

Wcs
mn;m0n0 Wcc

mn;m0n0

� �
x̂s

m0n0

x̂c
m0n0

�
(n0F0

T + m0F0
P)

Wss
mn;m0n0=

�

Sp

dudv cos2p(m u+ n v)(
�

Sp

f � s
p (x0)m0n0

(xp � x0
p) � df0

�
�xp � x0

p

�
�3 +

�

Sw

f � s
w (x0)m0n0

(xp � x0
w) � df0

�
�xp � x0

w

�
�3 )

where thef � s
p (x)mn; f � s

w (x)mn are the contributions tof �
p,f �

w produced by the harmoniĉxs
mn.



III. Applications

The equilibria of all examples presented are calculated withthe VMEC code [8,9]. For an
ASDEX-Upgrade type equilibrium (see Fig.1a-b) with a perfectly conducting closed wall the
growth rates of an = 1 external kink mode have been computed.
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Fig.1a-bFlux-surfaces, q-pro�le and pressure of an
ASDEX-Upgrade type equilibrium:< b > = 0:05

Fig.2 Growth rates of an external
kink mode versus plasma-wall distance

In Fig.2 the growth rates are plotted versus the plasma-wall dis-
tanceb=a (a = plasma radius,b = wall radius). The equilibrium
is stable for valuesb=a < 1:45 of the ideal conducting wall. For a
resistive wall atb=a = 1:2 growth rates of the external kink mode
versus the wall-resistance 1=(sd) are shown in Fig.3. The results
are compared with those obtained with the 2D CASTORFLOW
code- an extended version of the 2D CASTOR code - and show
excellent agreement. Fig.3 Growth rates of the

n = 1 resistive wall mode
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For a preliminary design of a multiply-
connected wall (Fig.4) for ASDEX-Upgrade the
stabilization of then = 1 kink mode has been
studied for the equilibrium shown in Fig.1 but
with < b > = :03. Fors = ¥ the mode is stabi-
lized by the wall suf�ciently close to the plasma
(see green wall in Fig.1). Fors 6= ¥ the mode
appears on the resistive time scale. Growth rates
versus resistance 1=(sd) are plotted in Fig.5. In
Fig.6a the m-harmonics ofxs of then = 1 kink
mode for the case without wall are shown and
in Fig.6b for the case with resistive wall. Fig.4 Preliminary design of a stabilizing wall

for ASDEX-Upgrade
The kink unstable quasi-axisymmetric equilibrium [10] shown in Fig.7 can be stabilized by
a perfectly conducting (s = ¥ ) closed wall atb=a = 1:3. For a wall withs 6= ¥ one gets
a resistive wall mode. The growth rates versus resistance 1=(sd) are shown in Fig.8. The
structure of the most unstable mode changes with decreasing resistivity. For high resistiv-
ity the (m;n) = ( 2;1)-harmonic with even parity dominates (Fig.9a) for low resistivity the
(m;n) = ( 5;3)-harmonic with odd parity (Fig.9b).
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Fig.5 Growth rates of then = 1
resistive wall mode for the wall
shown in Fig.4

Fig.6a Fig.6b
Fig.6a-bm harmonics ofxs for then = 1 external kink mode: a)
without wall, b) with resistive wall1=(sd) = 2:3� 10� 6
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Fig.7a-b �ux-surfaces (a), rotational transform (b),
pressure(b) of a quasi-axisymmetric equilibrium with
< b > = 0:013, B0 = :9 T, currentI = 280kA

Fig.8 Growth rates of a resistive
wall mode for a quasi-axisymmetric
equilibrium
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Fig.9 sequence of eigenfunctions: (m,n)-harmonics ofxs are shown for decreasing resistance:
dominant external mode changes from(m;n) = ( 2;1) to (m;n) = ( 5;3)
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