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[. Introduction

The CAS3D code solves the linear MHD stability problem for 3DikQria in the presence of
an arbitrarily shaped multiply-connected, ideal or régsivall. For tokamak stability studies
2D codes as GATO [1], NOVA [2], CASTOR [3], MARS [4] have been widelked. They
are restricted to axisymmetric wall con gurations. The VANEode [5] allows the treatment
of a multiply connected wall, but the vacuum (VALEN) and plagi@d&ON) contributions to
the eigenmode are not computed in a fully self-consistegt wa

The 3D MHD stability CAS3D code [6] was initially developed toigdy internal and external
modes of stellarator-symmetric con gurations without adocting wall. The present gener-
alized version can be applied to arbitrary 3D equilibria withany symmetry constraint. Two
new versions of the vacuum part have been added: For a cladédurrounding the plasma,
Laplace's equation for the magnetic potential has beeresidby a Fourier method. A nite
element method has been applied to treat cases with muttgriprected perfectly conducting
or resistive wall con gurations. The paper is organized @fotvs. In Section Il the nite
element vacuum code is sketched. In Section Il stabilitpidations are presented.

[l. The Vacuum Contribution

The linear theory of ideal MHD stability can be formulated ariational form.
The contribution of the vacuum region is given by

1
Wac= > df (n x)(B Bo)
Sp

with plasma-vacuum interfacs,, displacement vectox(r;t) = ed X(r), equilibrium mag-
netic eld Bg, and exterior normah. The perturbed magnetic el8 in the vacuum region

hastosatisfyB=N A; N (N A)= 0, N A= 0 with boundary conditions foh in
case of an ideal conducting wall

(n X)Bp on § (plasma-vacuum interface)

n A= on Sy (conducting wall)

In case of a thin resistive wall the boundary condition fatkdrom Faraday's and Ohm's law:
N E+ ‘%—? = 0; sE=J: Assuming that the perturbed quantities varyaﬁsone gets with
jw the current on the resistive wadl,the conductivity and d the wall thickness

n (N jw)= sdgn B on Sy(resistive wal:



The vector potentiaP can be generated by surface currgiggw on the plasma-vacuum

interface and the conducting wall:
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The surface-currents have to be determined such that thelaogconditions foA onS, and

S are ful lled. For a nite element problem it is advantagedesuse a variational method.
One introduces the functional [7]
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wheren Aex=(n X)Bg, Bo= Ns N(FOv F2u) andu;v are magnetic coordinates.

An ansatz for a divergence-free surface current is givenpby n Nf b Jw=n NF w;
wheref ;f\y are current-potentials. A general Ansatz figris given by

fo=Jpu+lpv+f(x(uv);
wheref ,(x(u;Vv)) is a single-valued function. The secular terms with the asgitial(net-
poloidal) currentsly,(Ip) play a role only for then= 0;n= 0 mode.
Varying L with respect td ,, andf ,, one obtains the above given boundary conditions.
For the nite element procedure the surfaces are discreiizi® triangles:
X=Xi+taX+thbxs 0<a+b<ll X=X X k=123
The current densityp on each triangle is assumed to be constant:
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where the ; are the values of the current potential at the vertices ofrthegle.
Varying the discretizedl with respect to thé; one gets a set of linear equations for the

With the Fourier expansions of the normal componentoff = x Nsandf ,
X = g i%nsin 2p(mu+ nv) + )A(ﬁmcoszp(mu+ nv);
mn
the vacuum matrix can be written as
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where the (X)) mn; f v (X)mn are the contributions tbp,f ,, produced by the harmonf(ﬁm.
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[1l. Applications

The equilibria of all examples presented are calculated thithVMEC code [8,9]. For an
ASDEX-Upgrade type equilibrium (see Fig.1a-b) with a perfectlgdwacting closed wall the
growth rates of a = 1 external kink mode have been computed.
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Fig.1la Fig.1b Fig.2 Growth rates of an external
Fig.1la-b Flux-surfaces, g-pro le and pressure of an  kink mode versus plasma-wall distance
ASDEX-Upgrade type equilibriums b >= 0:05
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In Fig.2 the growth rates are plotted versus the plasma-wsl di
tanceb=a (a= plasma radiudy) = wall radius). The equilibrium

is stable for valueb=a < 1:45 of the ideal conducting wall. Fora . . |
resistive wall ab=a = 1:2 growth rates of the external kink mode
versus the wall-resistance(,d) are shown in Fig.3. The results
are compared with those obtained with the 2D CASTRIEOW ol ]
code- an extended version of the 2D CASTOR code - and show ~ ° e ° "

excellent agreement. Fig.3 Growth rates of the
n= 1 resistive wall mode

For a preliminary design of a multiply-
connected wall (Fig.4) for ASDEX-Upgrade the
stabilization of then = 1 kink mode has been
studied for the equilibrium shown in Fig.1 but
with < b>= :03. Fors = ¥ the mode is stabi-
lized by the wall suf ciently close to the plasma
(see green wall in Fig.1). F& 6 ¥ the mode
appears on the resistive time scale. Growth rates
versus resistance={sd) are plotted in Fig.5. In
Fig.6a the m-harmonics of of then= 1 kink
mode for the case without wall are shown and

in Fig.6b for the case with resistive wall. Fig.4 Preliminary design of a stabilizing wall
for ASDEX-Upgrade

The kink unstable quasi-axisymmetric equilibrium [10] wimoin Fig.7 can be stabilized by
a perfectly conductings(= ¥) closed wall atb=a = 1:3. For a wall withs 6 ¥ one gets
a resistive wall mode. The growth rates versus resistarted) are shown in Fig.8. The
structure of the most unstable mode changes with decreassngfivity. For high resistiv-
ity the (m;n) = ( 2;1)-harmonic with even parity dominates (Fig.9a) for low resistithe
(m; n) = ( 5;3)-harmonic with odd parity (Fig.9b).
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Fig.5 Growth rates of the = 1
resistive wall mode for the wall
shown in Fig.4
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Fig.7a

Fig.7a-b ux-surfaces (a), rotational transform (b),
pressure(b) of a quasi-axisymmetric equilibrium with
< b>=0:013 Bp= :9 T, currentl = 280kA

gas2 gt,= 1.69e-1 1/(sd)=3.30e-2

qas2 gt,=2.3e-11/(sd)=6.8e-2
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Fig.6a-b m harmonics ok® for then = 1 external kink mode: a)
without wall, b) with resistive wafl=(sd) = 2:3 10 ©
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Fig.7b Fig.8 Growth rates of a resistive

wall mode for a quasi-axisymmetric
equilibrium

qas2 gt,=1.7e-1 1/(sd)=3.33e-2 qas2 gt,=8.7e-2 1/(sd)=6.3e-3
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Fig.9 sequence of eigenfunctions: (m,n)-harmonicscofire shown for decreasing resistance:
dominant external mode changes fromn) = ( 2;1) to(m;n) =( 5;3)
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