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1 Introduction

Poloidal correlation reflectometry (PCR) utilizing microwave plasma probing by sever-
al poloidaly separated antennae is used nowadays for plasma rotation diagnostics and
turbulence analysis [1]. The poloidal rotation velocity (PRV) V (x) is determined in this
technique from the temporal shift of the maximum of the cross correlation function of
scattered signals in two poloidaly separated channels Fig1. The localization of measure-
ments is based on the assumption that the microwave scattering off long wave-length

Figure 1: The poloidal correlation reflectometry experimental schemes (poloidal tokamak
cross section)

fluctuations dominating in the turbulence spectra occurs in the cut-off layer x = xc.
In the case of low turbulence level and/or small distance between the plasma bound-
ary and cut off, when the reflectometry scattering is linear, measurements of PRV are
possible if the turbulence correlation time tc is smaller then the temporal correlation
shift caused by the rotation tc ≪ yr/V (xc). In non-linear regime this condition is not
sufficient for reliable observation of the correlation of two signals, provided by poloidaly
separated channels. Even small difference of fluctuating phases in two channels due to in-
homogeneity of plasma rotation and reflectometry poor locality can completely suppress
correlation thus making measurements impossible. In the present paper the feasibility
of PCR is treated in nonlinear regime. We perform the investigation in WKB approxi-
mation in the frame of general nonlinear approach developed in [2], [3].
As a result the explicit expression for the cross correlation function of signals in two
poloidaly separated channels is obtained for arbitrary profiles of plasma density, rota-
tion velocity, turbulence spatial distribution and wave number spectra. The conditions
at which the plasma velocity measurement is possible are determined and its localiza-
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tion is estimated. The derived expression is valid in nonlinear regime of fluctuation
reflectometry, when the specular component is suppressed in the reflected signal. This
expression is convenient for estimation of measurement accuracy and for justification of
the obtained rotation velocity profiles.

2 General approach

The analysis is performed in the slab geometry in which the background plasma
parameters are dependent only on the radial co-ordinate x. The density fluctua-
tions δn (x, r⊥, τ) are assumed to be 3D inhomogeneous with the correlation func-
tion 〈δn (x1, r⊥1, 0) δn (x2, r⊥2, τ)〉 = δn2

0(x)K (x1 − x2, r⊥1 − r⊥2 − eyV (x)τ, τ). Here
r⊥ = (y, z) and V (x) is the PRV. Co-ordinates y, z stand for the poloidal and toroidal
directions, respectively. The density fluctuations are assumed to be small, satisfying con-
dition |δn/nc| ≪ lcx/xc ≪ 1, at which only one cut off exists in plasma at x = xc, and the

turbulence radial correlation length lcx is thought to be large enough lcx ≫ (c2xc/ω
2)

1/3
,

so that backscattering far from the cut off is negligible. Keeping in mind ITER (or
reactor scale tokamaks) conditions, we neglect the curvature effects and describe PCR’s
main features in the non-linear regime.
Under above assumptions the incident wave field in plasma can be represented as a su-
perposition of WKB modes propagating at different angles. In particular, restricting
ourselves to O mode reflectometry consideration, at the receiving antennae with the
accuracy to the first order in density perturbation amplitude we obtain the following
expression for the reflected wave:

Er(r⊥, t) =
∫

∞

−∞

dk⊥

(2π)2 Ẽ(k⊥) exp (iφr(r⊥,k⊥, t)), (1)

where k⊥ = (ky, kz), Ẽ(k⊥) is a Fourier transformation of the spatial distribution
of the unite power probing microwave beam E0(r⊥) at the probing antenna situat-
ed at rin = ((±yr + δy)/2; 0). The receiving antenna is assumed to be situated at
ra = ((±yr − δy)/2; 0). Both the probing and the receiving antennae pattern are as-
sumed to be Gaussian with the poloidal and the toroidal width equal ρ. Due to the
condition ρω/c ≫ 1 the phase φr can be represented in the paraxial approximation as
φr = ϕ0 + δϕ, where

ϕ0 = 2
∫ xc

0
ko (x, ω) dx+ k⊥r⊥ −

k2
yd

2
y

2
−
k2

zd
2
z

2
−
π

2
(2)

and

d2
y(x) = 2

∫ xc(ω)

x

dξ

ko(ξ, ω)
, d2

z(x) = 2κ−2
∫ xc(ω)

x
ko(ξ, ω)dξ, κ = ω/c. (3)

The ordinary mode radial wave number is given by the expression
ko (x, ω) = κ

√

1 − ω2
pe(x)/ω

2. According to [3], the phase perturbation δϕ with

the accuracy up to the first order terms is given by the WKB integral

δϕ (r⊥,k⊥, t) = −
ω2

2c2
·
∫ xc

0

δn
(

x, r−

⊥
(x,k⊥) , t

)

+ δn
(

x, r+
⊥

(x,k⊥) , t
)

nc

dx

ko(x)
(4)
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calculated along the unperturbed trajectory

r
±

⊥
(x,k⊥) = ey

(

y −
ky

2

(

d2
y(0) ± d2

y(x)
)

)

+ ez

(

z −
kz

2

(

d2
z(0) ± d2

z(x)
)

)

(5)

r⊥(x,k⊥) coming to the point (0, r⊥) from (0, rin). The upper and lower signs in Eq.(5)
correspond to the parts of the ray trajectory after and before the reflection from the cut
off surface. To derive the explicit expression for the cross-correlation function CCF12 of
two signals Ar(t1) and Ar(t2)

Ar(t1) =
∫ ∫

dr⊥Er(r⊥, t1)E0(r⊥ − r⊥a),

registered by two antennae

CCF12 =
〈(Ar (t1) − 〈Ar (t1)〉) (Ar (t2) − 〈Ar (t2)〉)

∗〉
〈

(Ar (t1) − 〈Ar (t1)〉)
2
〉1/2 〈

(Ar (t2) − 〈Ar (t2)〉)
2
〉1/2

(6)

where 〈...〉 stands for statistical averaging, we make several assumptions. First, it is
quite natural in the case lcx ≪ xc to consider the random phase perturbations δϕα

as a sum of many independent random values, describing its evolution as a normal
random process. Second, in the strong non-linear regime of PCR when the condition
κ2xclcxδn

2/n2
c ln (xc/lcx) ≫ 1 holds, the correlation of two reflectometer signals is not

suppressed only if they are produced by the ”same fluctuations” in similar propagation
of probing waves, i.e. when the condition

(

r
±

⊥
(x1,k⊥1) − r

±

⊥
(x2,k⊥2) − eyV τ

)

≪ lc⊥ is
fulfilled all over the plasma. Due to the strong decorrelating effect of the turbulent phase
distortions only the poloidal correlation scheme shown in Fig.1a have a chance to perform
rotation measurements in the non-linear regime. In the case of second scheme (Fig.1b),
where the propagation direction of probing waves is opposite, the correlation suppres-
sion makes the velocity measurements impossible. The rotation inhomogeneity due to
imperfect locality of reflectometry also decrease the correlation and therefore challenge
the velocity measurements in non-linear regime. We study this effect below taking into
account strong anisotropy of the turbulence, usually satisfying conditions ρ, lcy ≪ lcz. In
this case the strong wave front distortions are important only in the poloidal direction.
We consider the regime when the PRV is only weakly inhomogeneous and the turbu-
lence poloidal radius is rather long lcy ≫ δ, dy(0). In this case the incident wave front
distortions are relatively small and the reflected wave amplitude (1) can be calculated
using stationary phase method neglecting the fluctuating phase contribution. Introduc-
ing now an effective poloidal correlation radii and time appearing due to the incident
wave propagation through the turbulent plasma as

1

ρ2
m

=
ω4lcx
16c4

∫ dx

k2
o(x)

δn(x)2

n2
c

∂2

∂y2

(

K̄n(y, 0)y=0 + K̄n(y, 0)y=Kd2
y
(x)

)

ψm−1(x),m = 1..3,

1

tef2
c

=
ω4lcx
4c4

∫ dx

k2
o(x)

δn(x)2

n2
c

∂2

∂τ 2

(

K̄n(0, τ) + K̄n(Kd2
y(x), τ)

)

τ=0
, (7)
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where K̄n(y, τ) means K̄n(y, τ) = l−1
cx

∫ xc

0 dxKn(x, y, 0, τ) and ψ(x) = δV (x)/Vc with
δV (x) = (V (x) − Vc),Vc = V (xc), the CCF12 can be represented as

CCF12 = exp

(

−
(yr − Vc (1 + ρ2

1/ρ
2
2) τ)

2

ρ2
1

−
V 2

c τ
2

ρ2
3

(

1 −
ρ2

1ρ
2
3

ρ4
2

)

−
τ 2

tef2
c

)

(8)

The enhancing factor 1/k2
o(x), as it was demonstrated in [2], is not sufficiently local-

ized to cut-off. That results in the systematic mistakes in the case of inhomogeneous
PRV. In fact, as it is shown in Eq.8 measurements rather provide information about
the quantity Vc (1 + ρ2

1/ρ
2
2). Suppression of the correlation stimulated by the rotation

inhomogeneity is described by the term exp (−V 2
c τ

2/ρ2
3 · (1 − ρ2

1ρ
2
3/ρ

4
2)) ≤ 1 because of

(1 − ρ2
1ρ

2
3/ρ

4
2) > 0 according to Cauchy-Schwarz inequality. These effects are illustrated

Figure 2: CCF12 for different rotation profiles. (a) rotation profiles, (b) CCF12. Blue
lines correspond to homogeneous PRV, black and red lines correspond to inhomogeneous
one. The non-linearity criterion is chosen to be equal κ2δn2/n2

cxclcx = 7.2, the turbulence
level is assumed to be homogeneous and yr/lcy = 4

in Fig.2, where the CCF12 is shown both for homogeneous and inhomogeneous PRV.

3 Conclusions

According to our analysis only the PCR scheme (Fig.1a) have a chance of successful
poloidal velocity measurements at high density level (in non-linear regime). The
systematic mistake of the velocity estimation due to its non uniformity and imperfect
measurements localization are shown to be significant. The correlation suppression
possibility in the case of velocity inhomogeneous in the cut off is demonstrated.
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