On the theory of dust in a plasma using matched asymptotic expansions

N.Arinaminpathy, J.E.Allen, J.R.Ockendon

Oxford Centre for Industrial and Applied Mathematics, Oxford, OX1 3LB, UK

1. Introduction

The well-known ABR theory [1], originally developed for Langmuir probes, involves cold ions being accelerated radially towards a dust grain by a spherically symmetric potential. Using matched asymptotic expansions we exploit the smallness of ϵ_p (the size of the dust particle compared to λ_D) to find the electrostatic potential as a matched asymptotic expansion in ϵ_p. This method gives new insights into the structure of the solution.

We consider a single dust grain suspended in an electropositive, collisionless plasma, with Maxwellian electrons. It is bombarded by ions and electrons from the plasma, and in equilibrium attains a negative charge.

2. The ABR Theory

Under an electrostatic potential $V(\rho)$, cold ions move radially towards the dust grain with velocity v_i and density n_i. The governing equations are:

- Ion continuity: $\nabla \cdot \left(N_i v_i \right) = \frac{1}{\rho^2} \frac{\partial (\rho^2 N_i v_i)}{\partial \rho} = 0$
- Ion energy: $0 = \frac{1}{2} M v_i^2 + eV$
- Poisson: $\frac{d^2 V}{d \rho^2} + \frac{2}{\rho} \frac{d V}{d \rho} = -\frac{e}{\epsilon_0} \left[N_i - N_0 \exp \left(\frac{eV}{kT_e} \right) \right]$

We use the normalisations:

$\phi = \frac{eV}{kT_e}$; $q = \frac{v_i}{v_B}$; $n = \frac{N_i}{N_0}$; $r = \frac{\rho}{\lambda_D}$;

where $v_B = \sqrt{\frac{2kT_e}{M}}$. The above equations then reduce to:

$\frac{d^2 \phi}{dr^2} + \frac{2}{r} \frac{d \phi}{dr} = e^\phi - \frac{J}{r^2 \sqrt{-\phi}}$

where J is a constant, denoting the normalised ion current, given by:

$J = \frac{I_i}{n_0 e \sqrt{2kT_e/M 4\pi \lambda_D^2}}$
The boundary conditions are:

\[\phi, \phi' \to 0 \text{ as } r \to \infty \] \hspace{1cm} (3)

and on the dust surface, \(r = \epsilon_p \):

\[\phi = \phi_p; \quad J = \alpha \epsilon_p^2 e^{\phi_p} \] \hspace{1cm} (4)

where \(\alpha = \sqrt{\frac{M}{4 \pi m_e}} \). (4) represents the floating condition, i.e. balance of the ion and electron currents to the dust surface.

Points to note:

- We are interested in small dust particles, and the floating condition suggests this corresponds to small \(J \). Therefore we write \(J = \epsilon^2 \) for some \(\epsilon \ll 1 \).
- We will show \emph{a posteriori} that in fact \(\epsilon \sim \epsilon_p \sqrt{\alpha} \). This is consistent with values typically found in experiment.

The following theorem is fundamental:

\textbf{Uniqueness theorem [3]} Given the equation (2) and the boundary conditions (3), then for every \(J > 0 \) there exists a \emph{unique} solution \(\phi(r) \) for \(r \in (0, \infty] \).

Note that the floating boundary condition (4) does \emph{not} feature in this theorem. Instead, its role is to relate \(\epsilon_p \) to \(J \).

\section{Results}

The following structure emerges:

\begin{itemize}
 \item \(\phi^{(out)} \)
 \item \(\phi^{(in)} \)
 \item \(r \sim O(\epsilon^{\frac{2}{3}}) \)
\end{itemize}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Spatial structure of the asymptotic ABR solution for small \(\epsilon \sim \epsilon_p \sqrt{\alpha} \).}
\end{figure}

where:

\[\phi^{(out)} \sim -\frac{\epsilon^4}{2r^3} + \frac{\epsilon^8}{r^8} \left(-2 + \frac{24}{r^2} \right) + O(\epsilon^{12}) \] \hspace{1cm} (5)

\[\phi^{(in)} \sim \epsilon^{\frac{4}{3}} \left(\frac{c_0}{r_1} + c_1 + c_2 r_1^{\frac{1}{3}} \right) + \cdots \quad \text{as} \quad r_1 \to 0, \] \hspace{1cm} (6)
with \(r = \epsilon \frac{2}{3} r_1 \), and:

\[
e_0 \simeq -1.3844; \quad c_1 \simeq 2.1699; \quad c_2 = \frac{4}{3} \left(-c_0\right)^{-\frac{1}{2}}
\]

Using the floating condition (4), it is seen that the dust surface lies in the \(r_1 \to 0 \) limit of the inner region. This confirms that indeed \(\epsilon \sim \epsilon_p \sqrt{\alpha} \), allowing us to transfer the parameterisation of the solution from \(\epsilon \) to \(\epsilon_p \).

For the typical case of Argon (\(\alpha \simeq 76.5 \)), fig. 2a shows the potential profile thus obtained for \(\epsilon_p = 0.01 \) whilst fig. 2b shows the variation of the floating potential with grain size:

\[\text{Figure 2: Plots of (a) potential profile and (b) dust floating potential vs. dust size for Argon.}\]

In physical terms, if \(r_p \) is the dust radius in unnormalised units we have a region of order \(r_p^{\frac{2}{3}} \lambda_D^\frac{1}{3} \alpha^\frac{1}{4} \) around the dust particle. This represents the shielding distance around the dust grain.

- Outside this region, as expected we have plasma-like behaviour, where \(n_i, n_e \gg \nabla^2 \phi \), i.e. quasineutrality.

- In the inner region, however, the space-charge becomes more important. The dust surface lies in the inner inner region, where \(\phi \) satisfies Laplace’s equation to lowest order.

4. Work in progress

We are now in a position to investigate the problem of a dust particle immersed in a flowing plasma. Let \(v_0 \) be the ion flow speed normalised by the Bohm velocity.
• For \(v_0 \ll 1 \), we can treat the solution as a perturbation of the solution found here. In fact, for \(v_0 < \epsilon^{\frac{2}{3}} \), we find that the inner region remains unchanged to lowest order in \(\epsilon \); only the outer solution loses spherical symmetry.

• For \(v_0 \sim \epsilon^{\frac{2}{3}} \) the problem decomposes into the same regions as before but the spherical symmetry of the inner region is broken by the stronger ion flow.

• For \(1 > v_0 \gg \epsilon^{\frac{2}{3}} \) we expect a very different structure altogether.

This method will also be applied to the separate problem of a dust particle in the sheath, a typical scenario in terrestrial experiments. Here, the ion streaming velocity is at least \(v_B \) and the boundary conditions are changed.

5. References