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Introduction
The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important
quantity in the framework of optimization of stellarators because it allows to analyze the pos-
sibility for closure of contours of the second adiabatic invariant and therefore for improvement
of α -particle confinement in such a device (see, e.g., [1]). In this report, a method is presented
to compute such a drift velocity directly in real space coordinates through integration along
magnetic field lines. This has the advantage that one is not limited to the usage of magnetic co-
ordinates and can use the magnetic field produced by coil currents and more importantly also
results of three-dimensional MHD finite beta equilibrium codes such as PIES [2] and HINT
[3].
Basic equations
A Clebsch representation of the magnetic fieldB, B = ∇ ψ × ∇ θ0, is used whereψ labels a
regular or island magnetic surface andθ0 labels a given field line on a magnetic surface. As the
third coordinateϕ is taken which is counted along the magnetic field line. The equations for
particle motion (3.41) of Ref. 4 are used. In(ψ,θ0,ϕ ) notation these equations are given as
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v2−J⊥B, v2 = 2(w−eΦ)/m, J⊥ = v2
⊥/B, σ = ±1,

√
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hψ = hθ0 = 0,hϕ = 1/(B
√

g), hψ, hθ0 andhϕ are the contravariant components of the unit vector
h = B/B, hψ, hθ0 andhϕ are the covariant components of this vector. The poloidal motion of
trapped particles is characterized by the increment ofθ0, ∆θ0, during one bounce period. In
general, in toroidal geometry∇ θ0 is not single valued. This makes problems in simultaneous
calculations for a variety of trapped particles distributed along the magnetic field line. To avoid
these problems, a further transition is performed fromθ0 to a variableθ connected withθ0 by

θ = θ0+ χϕ , (4)

with χ=χ(ψ) and∇ θ being single valued quantities. From (4)χ ′ can be found as

χ ′ = − lim
ϕ→∞

1
ϕ

∇ θ0 · ∇ ψ
|∇ ψ|2 , (5)
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where prime denotes the derivative with respect toψ. For a magnetic field given in real-space
coordinates the computation of∇ ψ using integration along the field lines has been formerly
discussed (e.g., in [5]). The computation of∇ θ0 can be performed using the same equations
as for ∇ ψ but a starting value for∇ θ0 should be different from the starting value for∇ ψ
[∇ θ0st = (B× ∇ ψst)/|∇ ψst|2, according to the Clebsch representation ofB].
From the relation betweenθ andθ0 (4) one can derive

dθ
dt

=
dθ0

dt
+ χ

dϕ
dt

+ϕχ ′dψ
dt

. (6)

Substituting (1)-(3) into (6) and integrating with respect tot for one bounce period,τb, one
finds

∆θ̂ = −c
e

∮

[

∂
∂ψ

(mv‖hϕ )−ϕχ ′ ∂
∂θ0

(mv‖hϕ )

]

dϕ + χ ′c
e

∮

mv‖hθ0dϕ . (7)

After a series of transformations and dividing∆θ̂ by τb to definedθ/dt one obtains
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dθ
dt

,
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wherev̂θ,i is the velocity of the bounce averaged poloidal drifteθ0 =
√

g(∇ ϕ × ∇ ψ), ωc0 =
eB0/(mc), b′ is the pitch-angle variable connected withJ⊥ as b′ = v2/(J⊥B0), B0 is some
reference magnetic field. The quantitiesĜ j , V̂j andÎ j are determined as
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∂B
∂ψ

=
1

Bϕ ∇B × (∇ θ0+ χ ′ϕ ∇ ψ) · ∇ ϕ ,
∂Bϕ

∂ψ
=

1
Bϕ ∇B ϕ × (∇ θ0+ χ ′ϕ ∇ ψ) · ∇ ϕ , (11)

whereBϕ =B · ∇ ϕ , ∇ θ0 + χ ′ϕ ∇ ψ is a single valued quantity in the case ofχ ′ defined by (5),
s is the length along the magnetic field line. The indexj numbers thes intervals [smin

j , smax
j ]

whereb′−B/B0 ≥ 0, whereas the indexi in (8) numbers local minima ofB alongs.
Computational results
Using a field line tracing code Eqs. (8)-(11) are solved in cylindrical coordinates(ρ,ϕ ,z) for
some magnetic surfaces of the CHS [6] standard and the drift-orbit optimized (inward shifted)
configurations and W7-X. Computations ofB are performed using the Biot-Savart law code
(for CHS) or data from the HINT2 code (for W7-X equilibrium with finiteβ) as in Refs. [7,8]
where studies of the effective ripple for CHS and W7-X have been carried out.
Figures 1 - 3 show results for CHS by one appropriate magnetic surface for every configuration.
The mean radius of the magnetic surface is indicated on the plots. Fig. 1 illustrates the behavior
of ∇ θ0 · ∇ ψ/(ϕ |∇ ψ|2) [see Eq. (5)] along the magnetic field line for the magnetic surface of
the CHS standard configuration. It can be clearly seen how this quantity approaches the final
value ofχ ′. Onceχ ′ has been computed ˆvθ can be calculated with the help of Eqs. (8)-(11).
Fig. 2 (middle) shows corresponding to Fig. 1 characteristic results of such calculations in a
normalized formvθ,norm as functions of the pitchγ = v‖0/v⊥0, wherev‖0 is v‖ at a local min-
imum of B andv⊥0 =

√
J⊥B0. The curves are marked in accordance with the numbers of the
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minima ofB in the distribution ofB/B0 along the magnetic field line which is shown at the top
of Fig. 2. Also, at the bottom, the angleγJ‖ between theJ‖ contour and the magnetic surface
cross-section is shown in a normalized formγc

γc =
2
π

γJ‖ , γJ‖ = arctan
van,i

v̂θ,i
, (12)

wherevan,i is the velocity of the radial bounce-averaged trapped particle drift which can be
calculated using the corresponding equations of [5]. In the calculations,|γc| can be realized
within the limits [0,1]. For |γc| = 1 theJ‖ contour is perpendicular to the magnetic surface and
most probably such a contour is not closed. For small|γc| the angle between theJ‖ contour and
the magnetic surface is small and one can expect that the correspondingJ‖ contour is closed
and is closely tied to the magnetic surface. Analogous results for the drift-orbit-optimized CHS
configuration are shown in Fig. 3 where the distribution ofB/B0 along the magnetic field
line shows the characteristic look ofσ-optimization (fullσ-optimization would mean that all
minima have exactly the same value). One can also see that the fraction of trapped particles
with vθ values close to zero (and|γc| close to unity) is much smaller than that for the standard
configuration which is a clear result of the optimization. Additional results including those for
W7-X have been presented in Ref. [9].
Summary
The obtained equations have been solved in real space coordinates using a field line tracing
code for the magnetic field computed using the Biot-Savart law code (for CHS) or data from
the HINT2 code (for W7-X equilibrium with finiteβ). Combining studies of the radial drift as
well as the poloidal drift one can conveniently assess the character ofJ‖ contours in the neigh-
borhood of a magnetic surface. Small values of the parameterγc [Eq. (12)] indicate poloidally
closed contours ofJ‖ which are closely tied to the magnetic surface whereas|γc| values close
to unity definitely indicate the presence of unclosed contours ofJ‖. To illustrate the approach,
computations for two stellarator configurations with quite different results have been shown.
For the inward shifted CHS configuration, one can see the beneficial effect ofσ-optimization
on the bounce averaged poloidal drift velocity and the pertinent closure of contours ofJ‖. The
results for W7-X are in a reasonable correlation with the results obtained formerly in mag-
netic coordinates. The presented approach very well complements the effective ripple as target
quantity for optimization by putting more significance to fast particle confinement which is not
covered well by the effective ripple.
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Fig.1. Determination ofχ ′ for the stan-
dard configuration of CHS for a mag-
netic surface with a moderate distance
from the magnetic axis;n is the number
of integration steps along the field line
with 1280 steps per magnetic field pe-
riod.
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Fig.2. Computational results for a magnetic
surface of the standard CHS configuration:
(top) distribution ofB/B0 along the magnetic
field line (n is the same as in Fig. 1); (mid-
dle) vθ,norm as a function of pitch-angleγ for
local minima ofB as indicated in the Figure;
(bottom) parameterγc as a function ofγ for the
same local minima ofB.
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Fig.3. Same as Figure 2 for a mag-
netic surface of the drift-orbit opti-
mized CHS configuration.
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