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I. Introduction

It has been know since the early days of fusion research that plasma compressibility effects

can stabilize ideal MHD interchange modes in closed line configurations. The present work

focuses on this stabilizing mechanism using a more realistic plasma model than ideal MHD.

One application of interest is LDX, which can be reasonably well modeled by a cylindrical hard-

core Z-pinch. The hard core stabilizes m≥ 1 modes. Only the m = 0 sausage instability can be

unstable. Ideal MHD predicts that for low β this mode can be stabilized by a sufficiently weak

pressure gradient near the edge of the plasma. Specifically, stability follows if rp′/p + 2γ > 0

where γ = 5/3 is the ratio of specific heats representing the stabilizing effect of compressibility.

The present work reexamines the compressibility stabilization effect using a fluid model for

electrons but with a full Vlasov treatment for the ions. There are two main results to report.

(1) First, an exact quadratic energy integral is derived that is valid for arbitrary 3-D static MHD

equilibria, including both ergodic and closed field line configurations. This relationship shows

that at marginal stability the compressibility stabilization term vanishes identically – there is

no compressibility stabilization! This result is in contrast to other recent generalized theories

[1, 2] which predict a modified form of compressibility stabilization but do not contain all the

physics in the present model. (2) The second result is a derivation of the actual dispersion rela-

tion for a linear hard-core Z-pinch. The new model shows that instability persists for all negative

values of rp′/p without any possibility of compressibility stabilization. It is demonstrated that

the existence of resonant particles satisfying ω = k⊥(VE×B +V∇B +Vκ), is responsible for the

persistence of instability, thereby explaining the absence or inclusion of compressibility stabi-

lization in the Vlasov ion or ideal MHD models respectively.
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II. The model

The model under consideration treats the electrons as a fluid and the ions with the Vlasov

equation. The electrons are assumed to be a massless, collision dominated fluid with a scalar

pressure and a simple energy equation. The electron model is given by

∂n

∂ t
+∇ · (nue) = 0 Mass

en(E+ue×B)+∇pe = 0 Momentum (1)

pe = pe(n) Energy

As stated the ions are described by the Vlasov equation.

∂ f

∂ t
+v ·∇ f +

e

mi

(E+v×B) ·∇v f = 0 (2)

The model is closed with the low frequency Maxwell equations.

∇×E =−
∂B

∂ t

∇×B = µ0e

∫

(v−ue) f dv (3)

∇ ·B = 0

III. The general energy integral

We now consider the linear stability of MHD modes as described by the new model. Our

main interest is to compare the stability predictions against those of ideal MHD for the usual

case of static equilibria. In the Vlasov-fluid model static equilibria requires that the electrons

carry all the current in equilibrium. This implies that the equilibrium ion distribution function

satisfies f = f (ε), where ε = miv
2/2 + eφ(r). With these assumptions it can be shown that

equilibrium force balance for the Vlasov-fluid model is given by J×B = ∇p (where p is defined

by p = pe +
∫

(miv
2/3) fidv) which is identical to ideal MHD.

The next step is to linearize about this equilibrium. The connection to ideal MHD is made

by introducing the electron fluid displacement vector: ũe =−iωξξξ +ue ·∇ξξξ −ξξξ ·∇ue . After a

lengthy calculation an exact energy integral can be derived, which has the form

|ω|2 =−
δWV F

KV F

(4)

where
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δWV F =−
1

2

∫

ξξξ
∗
· [J× B̃+ J̃×B+∇(ξξξ ·∇p)]dr

KV F =
1

2

∫

{

I2I0−|I1|
2 +[γi/(γe + γi)]|I1|

2

}

/I0 dr (5)

I0 =−
∫

fεdv, I1 =−
∫

s̃ fεdv, and I2 =−
∫

|s̃|2 fεdv

and the trajectory integral is s̃ =
∫ t
−∞

[ξξξ · (E + v×B)− (γe pe/en)∇ · ξξξ ]dt ′. Note that for

∂ f /∂ε < 0 , KV F > 0. The above relation, valid for both ergodic and closed line systems, shows

that a plasma is marginally stable when δWV F = 0, corresponding exactly to ideal MHD stabil-

ity for incompressible displacements – there is no compressibility stabilization term in δWV F .

The presence of resonant particles strongly suggests that any change in plasma parameters will

result in complex eigenvalues. Thus, the value of ωi will be either positive (instability) or nega-

tive (stability) depending on the direction of change in the plasma parameters.

IV. The hardcore Z-pinch

We now explicitly demonstrate the destabilizing effects of resonant particles by calculating

the dispersion relation for a hardcore Z-pinch, a cylindrical model of LDX. The equilibrium is

characterized by B = B(r)eθ and p(r). We focus on the m = 0, k⊥ 6= 0 interchange mode which

is stabilized by compressibility in ideal MHD. The analysis is greatly simplified by focusing

on the parameter range corresponding to MHD modes: ω/ωci ≪ 1, k⊥ρi ≪ 1, andβ ≪ 1. In

this regime B(r) ≈ B(a)a/r, and ξξξ = ξξξ⊥ = ξ er + ξzez. After another lengthy calculation a

differential equation can be derived to determine the eigenfunction ξ and the eigenvalue ω .

ω2

k2
⊥

d

dr

[

ρr3 d

dr

(

ξ

r

)]

−

[

ω2ρr2−2r
d p

dr
−4(Γe pe +Γi pi)

]

ξ = 0

Γe = γeΩ(Ω̄Y 2−1)

Γi = Ω(Ω̄2Y 2− Ω̄−1) (6)

Ω̄ = Ω+Ω∗ = rωci(ω +ω∗)/k⊥v2
Ti

Y =−iπ1/2e−Ω̄[1+Φ(iΩ̄1/2)]

Φ(z) = (2/π1/2)
∫ z

0
exp(−ζ 2)dζ
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Using the familiar short wavelength local approximation, and assuming that pe = pi = p/2,

two interesting limits can be calculated.

First, in the strongly MHD unstable regime (i.e. −rp′/p≫ 1 and |Ω| ≫ 1) the growth rate is

given by

ω2
i

ω2
M

≈−2

(

rp′

p
+ γe +

7

4

)

(7)

where ω2
M = p/ρr2 is the characteristic MHD frequency. We see that plasma compressibility

enters in a manner very similar to ideal MHD but only in the strongly unstable regime where it

is unimportant.

Second, for plasmas that would be ideal MHD stable one must take the opposite limit (i.e.

−rp′/p ≪ 1 and |Ω| ≪ 1) and it is here that the resonant particles play an important role. In

this limit the plasma remains unstable, with a growth rate given by

ω2
i

ω2
M

≈ 2π(k⊥ρi)
2 γ2

e (γe−1)3

(γe +1)7

(

−
rp′

p

)5

(8)

Curves of ωi/ωM vs. − rp′/p for various k⊥ρi are illustrated in Fig. 1 using the local ap-

proximation. We see that there is no compressibility stabilization - the plasma is unstable for

any rp′/p < 0 with the fastest growth rates occuring for short wavelengths.

Figure 1: Growth rate vs. pressure gradient
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