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In the ordinary tokamak discharges the current density is usually peaked at the plasma center

and poloidal field is finite everywhere in the plasma column except the magnetic axis. Howe-

ver, stable tokamak plasmas with nearly zero poloidal magnetic field and therefore nearly zero

toroidal current density in the appreciable central region (a “current hole") were observed in the

JET [1] and JT-60U [2] tokamaks and were sustained for several seconds. In the JET dischar-

ges it was noticed that the core current density is clamped at zero, indicating the existence of

a physical mechanism which prevents it to becoming negative. This issue is related to further

experimental and theoretical studies, e.g. [3, 4, 5] and Refs. cited therein, according to which a

possible route to current reversal in the plasma core is the formation of configurations with non-

nested magnetic surfaces. In particular, experimental results of the HT-7 tokamak [3] indicated

the existence of two oppositely flowing currents in the high-field-side and low-field-side du-

ring current reversal. Equilibria of this kind with zero average toroidal current were constructed

recently in Ref. [5]. Another issue which plays a potential role is plasma flow; for example, in

the presence of toroidal flow the existence of tokamak equilibria with central current reversal

and nested magnetic surfaces was claimed in Ref. [6].

The aim of the present contribution is twofold: (i) to construct analytic equilibrium solutions

with parallel incompressible flow and either peaked or reversed current density in connection

with nested or non-nested magnetic surfaces and (ii) to apply a recent sufficient condition [7] to

a particular solution [Eq. (4) below] as a first-step stability consideration.

The equilibrium of an axisymmetric plasma with incompressible flow parallel to the magnetic

field satisfies the generalized Grad-Shafranov equation [8, 9]

∆⋆u = −R2 dPs

du
− 1

2

d

du

(

X2

1−M2

)

(1)

Here, (z, R, φ ) are cylindrical coordinates, u(R,z) is the poloidal magnetic flux function, Ps

represents the pressure when the flow vanishes, X relates to the toroidal magnetic field, M is

the Alfvén Mach function and ∆⋆ = R2∇ · (∇/R2). Eq. (1) should be solved under appropriate

boundary conditions after assigning the free functions Ps(u), X(u) and M(u); i.e., for tokamak
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Figure 1: A variety of configurations de-

termined by the equilibrium solution 4.

and reversed filed pinch equilibria u can be taken

constant on a fixed boundary while for equilibria of

compact toroids u must be additionally constant on

the axis of symmetry.

We will construct an analytic solution of Eq. (1)

by using the linearizing ansatz

M2 =
M2

au2
(

X2
0 +u2

aΛ1

)

u2
a

(

X2
0 +u2Λ1

) ,

X =
(

1−M2
)1/2 (

X2
0 +Λ1u2

)1/2
,

Ps = Psa
u2

2
, (2)

where Ma, X0, Psa, Λ1, and ua are constants. Then,

on separation of variables for up-down symmetric

configurations of arbitrary aspect ratio Eq. (1) ad-

mits the solution

u(R,z) = α [F0(η ,ρ)+ γG0(η ,ρ)]cos

(

λ
z

R0

)

,

(3)

where α , γ , λ and R0 are constants,

ρ =
√

PsaR2/(2R0), η = (λ 2 −Λ1)/(4
√

Psa), and

F0 (G0) the Coulomb wave function of the first

(second) kind. For vanishing flow (3) reduces to the

Hernegger-Maschke solution [10] and for η = 0 it

assumes the simpler form

u = α (sinρ + γ cosρ)cos

(

λ
z

R0

)

. (4)

We will consider further (4) for a tokamak of rec-

tangular boundary cross section of height 2b and

width 2a. The quantities a and b will be chosen as

free parameters together with the radial position of

the geometric center (R0), the vacuum toroidal ma-

gnetic field at the geometric center (Bφ0 = X0/R0),

the safety factor on one of the magnetic axes (qa)

and the Mach function on the respective magne-

tic axis (Ma). To avoid potential current driven instabilities the value of qa will be chosen
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so that the safety factor on all magnetic axes be larger than unity. The boundary condition

u(R = R0 ± a) = 0 and u(z = z0 ± b) = 0 leads to discrete values of Psa, Λ1 and γ . Simply or

multiply toroidal configurations can be constructed for different values of a couple of integers k

and l. In particular, for the configurations shown in Fig. 1 we have chosen M2
a = 0.1 and ITER

relevant values for the other free parameters: a = 2m, b = 3.5m, R0 = 6.2m, Bφ0 = 5Tesla and

qa = 1.1. As expected current reversal on axis is possible for multiply toroidal configurations.

In particular, the doubly toroidal configuration of Fig. 1 has nearly zero average toroidal current

as shown in Fig. 2. Also, the positions of the magnetic axes have been analytically determined

together with the Shafranov shift of any of them:
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Figure 2: The toroidal current density

profile on the mid-plane z = 0 normalized

with respect to the inner magnetic axis for

the doubly toroidal equilibrium of Fig. 1.

∆R = R0

{

[

1+
a2

R2
0

+
2a

R0k
(1− k)

]1/2

−1

}

. (5)

The linear stability of the equilibria described by

(4) will now be considered by applying a recent suf-

ficient condition [7]. This condition states that a ge-

neral steady state of a plasma of constant density

and incompressible flow parallel to B is stable to

small three-dimensional perturbations if the flow is

sub-Alfvénic (M2 < 1) and A ≥ 0, where A is given

by Eq. (20) of Ref. [7]. For an axisymmetric equili-

brium A is put in the form

A = −g2

{

(J×∇u) · (B ·∇)∇u+
1

2

dM2

du

(

1−M2
)−1 |∇u|2

[

(

1−M2
)−1/2

∇u · ∇B2

2
+g

(

1−M2
)−1 |∇u|2

]}

(6)

where

g =
(

1−M2
)−1/2

(

dPs

du
− dM2

du

B2

2

)

. (7)

For elongations (b/a) varying from 0.25 to 4, qa from 1.1 to 10 and M2
a from 0 to 0.5 it turns

out that the condition A > 0 is never satisfied irrespective of nested magnetic surfaces. As an

example the variation of A in the mid-plane z = 0 for the singly toroidal configuration of Fig. 1

is given in Fig. 3. However, since the stability condition is sufficient, this result does not neces-

sarily imply that the equilibrium (4) is unstable.
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Figure 3: Radial variation of A in the mid-

plane z = 0 normalized with respect to the

absolute value at the geometric center for

the singly toroidal configuration of Fig. 1.

In summary, we have constructed analytic equi-

libria in terms of Coulomb wave functions with

incompressible flow parallel to the magnetic field

and pressure gradient, toroidal current density and

flow vanishing on the plasma boundary. The pos-

sibility of regular configurations (with nested ma-

gnetic surfaces) and reversed current density confi-

gurations (with non nested magnetic surfaces) has

been demonstrated by means of a particular sinu-

soidal solution [Eq. (4)]. Also, as a first step study

of linear stability, a recent sufficient condition was

applied to the sinusoidal solution. For wide para-

metric regions it turns out that the condition is not satisfied irrespective of current reversal and

Mach numbers. Since the condition is sufficient, however, not fulfillment does not necessarily

imply that the equilibrium is unstable. Finally, it is noted that extension of the present study for

the generic Coulomb wave function solution (3) and realistic boundary shapes is under way.

References

[1] N.C. Hawkes, B.C. Stratton, T. Tala et al., Phys. Rev. Lett. 87, 115001 (2001).

[2] T. Fujita, Suzuki, T. Oikawa et al., Phys. Rev. Lett. 95, 075001 (2005).

[3] Jiangang Li, Jiarong Luo, Shaongie Wang et al., Nucl. Fusion 47, 1071 (2007).

[4] Paolo Rodrigues and João P.S. Bizarro, Phys. Rev. Lett. 99, 125001 (2007).

[5] Yemin Hu, Phys. Plasmas 15, 022505 (2008).

[6] Yu.I. Pozdnyakov, Phys. Plasmas 12, 084503 (2005).

[7] G.N. Throumoulopoulos, H. Tasso, Phys. Plasmas 14, 122104 (2007).

[8] H. Tasso, G. N. Throumoulopoulos, Phys. Plasmas 5, 2378 (1998).

[9] G.N. Throumoulopoulos, H. Tasso, G. Poulipoulis, J. Plasma Phys. 74, 327 (2008).

[10] F. Hernegger, in: E. Canobbio et al. (Eds.), Proceedings of the 5th Conference on Control.

Fusion, Vol. I Commissariat a l’Energie Atomique, Grenoble, 1972, p. 26.; E.K. Maschke,

Plasma Phys. 15, 535 (1973).

35th EPS 2008; D.Apostolaki et al. : A contribution to the equilibrium and stability of axisymmetric plasmas w... 4 of 4


