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Abstract

Turbulent fluctuations and the associated transport of heat and particles play a crucial

role in magnetic fusion devices. Experimental observations reveal that even though tur-

bulence is essentially electrostatic, magnetic fluctuations can have a strong impact on the

plasma dynamics. Moreover, several analyses have revealed the non-Gaussian statistics in

the edge fluctuations of a number of devices. In this study, we analyze the electromag-

netic resistive ballooning turbulence, as modeled with the global code EMEDGE3d, and

we focus on the statistical properties of the electromagnetic fluctuations.

Introduction

Plasma turbulence and the associated transport are limiting factors for the performance of

fusion machines. Statistical descriptions of plasma turbulence can reveal basic characteristics

of the turbulent dynamics over a broad range of experimental conditions. In this work, we focus

on the statistical description of Resistive ballooning modes (RBM), a class of modes that plays

a significant role in the confinement of the finite β edge plasma.

The analysis we perform is based on numerical results obtained with the three-dimensional

global code EMEDGE3D that self-consistently computes the evolution of RBMs in toroidal

geometry. The RBM turbulence is described by the following coupled equations for the nor-

malized electrostatic potential φ , pressure p and magnetic field ψ [1]:
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The ballooning instability is driven on the low field side by the combination of the pressure

gradient and the toroidal curvature of the magnetic field lines.
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∇|| and ∇⊥ correspond to the parallel and the perpendicular gradients along the magnetic

field lines, respectively, G is the curvature operator, G = sinθ∂r +cosθ/r∂θ , ν is the viscosity,

χ⊥ and χ‖ are the perpendicular and the parallel diffusivity. Time is normalized to the resistive

interchange time τint =
√

R0Lp/2/Cs, where Cs is the sound speed. The characteristic perpen-

dicular and parallel length scales are the resistive ballooning length ξbal =
√

ρη‖/τintLs/B and

the magnetic shear length Ls, respectively. Here, ρ is the mass density, η‖ is the parallel resis-

tivity, and α is given by α = βL2
s/(R0Lp). The thermal diffusivities χ‖,⊥ are normalized with

respect to τint/ξ 2
bal and the normalized viscosity with respect to τint/(ξ 2

balmin0). Moreover, S(r)

represents a constant energy source, δc = 10Lp/R0,

Magnetic flux surfaces are modeled by a set of concentric circular tori, with coordinates

(r,θ ,ϕ) that correspond to the minor radius, and the poloidal and toroidal angle, respectively.

Assuming a monotonically increasing safety factor q(r), the simulations cover the domain be-

tween q = 2 and q = 3 in the vicinity of a reference surface r0 at the plasma edge. The values

we have used for the parameters are r0/ξbal = 500, R0/Ls = 1, δc = 0.04, and ν = χ‖ = 2.

Throughout the analysis that follows, we analyze results obtained by DNS of RBM using differ-

ent values for α , namely α = 0.01,0.1,0.2,0.3 (which correspond to β = 0.02,0.2,0.4 and 0.6

for Ls = R0 = 2.5 m and Lp = 0.4 m), and we kept constant the rest of the parameters. Without

losing generality, the analysis that follows is limited to data sets that belong to a given poloidal

cross section.

Spectra of potential fluctuations

We have numerically calculated the temporal and the spatial spectra of the turbulent fluctu-

ations for a chosen poloidal cross section. In Fig. (1), we present the averaged spectra for the

potential fluctuations for four different values of the plasma α(β ). The most striking difference

Figure 1: The averaged spectra of the potential fluctuation

between the different cases appears in the poloidal spectra, where it is evident that the increase

of the plasma β value leads to a significant increase in the level of the potential fluctuations that

correspond to large–scale poloidal flows.
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Structure functions

One of the most efficient tools to study the scaling and self-similarity properties of turbulence

is the structure function [2]. The structure function of order q for a field u in a fully developed

turbulent state is defined as [2] Sq(u;r) = 〈|u(x+ r)−u(x)|q〉 where r represents a spatial sepa-

ration and 〈...〉 is the ensemble average. The structure function Sq(u;τ) for the temporal scales

is defined similarly. We have properly calculated the temporal and the spatial structure func-

tions for the spatio-temporal fluctuations of the potential, pressure, magnetic field and vorticity,

for various values of α . When the signal u is self-similar over some range of spatial (temporal)

Figure 2: The structure functions Sq (q =0.5,1,2..8) versus S3 for the potential fluctuations (Left panel).

The ESS relative scaling exponents of the potential φ (Right panel).

scales, the structure function shows a power–law dependence on the scale-size, i.e. the q–th or-

der structure function is expected to scale as Sq ∝ rζq , where ζq is the scaling exponent. This is

theoretically the case in the inertial range of turbulence - the range of wave numbers where the

dominant process is the energy transfer and not the energy injection or dissipation. However,

in plasmas the different scaling regimes are not widely separated, which causes difficulties in

the accurate estimate of the scaling exponents. The notion though of Extended-Self-Similarity

(ESS) [3] provides a successful method that allows to extend the structure function analysis

into the dissipation and the large scale region. With the ESS method, the dependence of the

ratio ζq/ζ3 on q can numerically be determined. For the case of RBM turbulence, we find a q/3

linear scaling for ζq/ζ3, which is in agreement with the structure function exponent for the po-

tential as it is experimentally found in edge turbulence [4], indicating the mono-fractal scaling

for the fluctuations.
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The scaling between kurtosis and skewness

In a recent Letter, Labit et al. [5] found a unique parabolic relation, K = (1.502±0.015)S2−

(0.226± 0.019), between the skewness S and kurtosis K of about ten thousand observed den-

sity fluctuation signals that are associated with drift-interchange turbulence over a broad range

of experimental conditions. Using the results of our RBM turbulence simulations, we calcu-

lated the skewness and the kurtosis of ∼ 3× 105 time series. The K-S scatter plot is shown in

Fig. (3), and it has clear a parabolic character. A least-squares fit with a quadratic polynomial

yields K = (1.476± 0.006)S2 − (0.496± 0.002). The uncertainty in the estimated coefficients

is determined as the 95% confidence limits. Parabolic relations of this kind have been found in

different physical systems. In a recent report [6], Krommes discussed the remarkable similarity

in the K-S relation of Torpex density fluctuations with the K-S relation of sea-surface temper-

ature fluctuations, and suggested a generalized non-linear Langevin theory that includes linear

wave propagation for its explanation.

Figure 3: Kurtosis vs. skewness computed for∼ 3×105 time-series and the fitted quadratic polynomial.
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