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The plasma disk structures [1,2] that can surround compact objects such as black holes and 

that are dominated by the gravity of these objects can sustain a spectrum of typical collective modes.  

These are being identified and are found to be suitable for the interpretation of a variety of relevant 

experimental observations such as the winds emanating from disk structures around black holes or 

the so-called Quasi-Periodic Oscillations (QPO’s) of X-ray emission from this kind of object.  The 

driving factors of these modes are the differential rotation (radial gradient of the rotation frequency) 

and the vertical gradients of the plasma density and temperature. 

The simplest configuration from which the modes that we shall analyze can emerge is a thin 

currentless disk that is threaded by a relatively weak vertical magnetic field zB  and where the only 

component of the plasma flow velocity is toroidal.   In particular, we assume that the central plasma 

pressure 0p  exceeds the magnetic pressure 2 8B π .  The particle density profile, assuming an up-

down symmetry, is represented by ( )2 2

0 01n n z H−0 , near the equatorial plane at the reference 

distance 0R R=  from the axis of symmetry, with 2 2

0 0H R2 .  Different vertical temperature 

profiles, corresponding to different heating processes, are represented near the equatorial plane by 

related values of the parameter ( )2 2

0lnT d T dz Hη = −  where 2 e iT p n T T≡ = + .   Considering 

Newtonian regimes, the radial equilibrium equation, to lowest order in the ratio 
22

0 0
H R , reduces to 

( ) ( )2 3 2

0 0 0kR GM R R∗Ω = ≡ Ω  where ( )RΩ  is the rotation frequency, ( )0k RΩ  is the Keplerian 

frequency, *M  is the mass of the central object and v Rφ = Ω  is the toroidal velocity.  The relevant 

vertical equilibrium equation is 20 kp z z ρ= −∂ ∂ − Ω , where im nρ ≡  is the mass density, and we 

consider a variety of temperature profiles including the case  0Tη = .   

Axisymmetric Modes 

Normal mode perturbations, from the indicated initial state, are represented by 

( ) ( )0 0 0v̂ v , expR R z t i t imφ φ φγ ω φ= − − +##  where 0γ  is the mode growth rate, 0ω , its frequency 

of oscillation and mφ , the toroidal mode number.  The basic linearized equations for these 

perturbations include 

( )ˆ ˆˆ 0c+ × + × =E v B v B ,    (1) 
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considering that  ˆ ˆt c−∂ ∂ = ∇×B E ,  and the total momentum conservation equation 

2
ˆ 1 ˆ ˆˆ ˆ ˆ ˆ 0
4 4

m k zp z
t

ρ ρ
π π

Ã Ô∂ ⋅Ã Ô
≡ + ⋅∇ + ⋅∇ + ∇ + − ⋅∇ + Ω =Ä ÕÄ Õ

∂Å Ö Å Ö

B B
A v v v v v B B e .  (2) 

Here, the initial magnetic field zB  is considered to be varying over scale distances of the 

order of 0R .  It is reasonable to assume that the collisional mean free path is short relative to 

0H  the height of the disk and to the mode radial wavelengths.  Thus, the thermal conductivity 

can be neglected and the adiabatic equation of state can be adopted.  The perturbed linearized 

form of this is  ( ) ( )0 0
ˆ ˆ ˆv 0zi im R p p z pφγ ωÇ ×− + Ω + ∂ ∂ + Γ ∇ ⋅ =É Ú v  where 5 3Γ = .   In the case 

where 0mφ ≠ , we choose to consider modes that co-rotate with the plasma at 0R R= .  

Therefore we take ( )0 0 0m Rφω δω= Ω + , where ( )0 0m Rφδω < Ω  and define 

( )0 0t i R Rγ γ ′≡ + Ω − .  Where d dR′Ω ≡ Ω .  Then Eq. (1) leads to ˆ ˆv̂ R tφ φξ γ ξ′= −Ω + , 

ˆˆ
R z RB B zξ= ∂ ∂ , ˆˆ

zB B zφ φξ= ∂ ∂ , ( )ˆˆˆ
z z z zB B z Bξ= ∂ ∂ − ∇ ⋅つ , while ˆˆˆ

zp dp dz pξ= − − Γ ∇ ⋅つ .  

Likewise, the perturbed density is given by ( ) ˆˆˆ
z d dzρ ξ ρ ρ= − − ∇ ⋅つ  and, if we follow the 

arguments given in Ref. [3], we consider “isobaric” perturbations implying that 

ˆp̂ p ρ ρ2  and ( )ˆ ˆ
z dp dz pξ∇ ⋅ −つ 0 .  We can verify that, for 0 0m R Hφ < , the toroidal 

pressure gradient can be neglected in the φ -component of Eq. (2).  Then this reduces to 

( ) 2 2 2ˆ ˆ2 vt k R A zφγ ξ ξΩ ∂ ∂0  for 2 2 2 2vt A zγ ∂ ∂2 .  In fact we limit our analysis to the case where  

( )( )0 0m d dR R Rφ γΩ − < .  Following Ref. [3], we consider the ( ) 0m zφ∂ ⋅∇× ∂ =e A  

equation, that is  

( )
2 22 2 2

2 2 2

2 2
ˆ ˆ ˆ ˆˆˆ2 v 0

4 4

z z
t R k R t z k R

B B
z

z z z R R z
φρ γ ξ ξ ργ ξ ρ ξ

π π

Ê ÛÇ × Ç ×∂ ∂ ∂ ∂ ∂Í Í
− Ω − − + Ω − =Ë ÜÈ Ù È Ù∂ ∂ ∂ ∂ ∂ ∂Í ÍÉ Ú É ÚÌ Ý

,   (3) 

where ˆ ˆ
z Rz Rξ ξ∂ ∂ − ∂ ∂0  , given that, ˆ ˆ

z pHξ∇ ⋅つ /  where 2 21 lnpH d p dz≡ . 

The relevant axisymmetric modes, are represented by ( ) [0

z 0 0 0
ˆ expz G z t i tξ ξ γ δω= −#  

( )0Rk R R+ − ] ( )0exp tγ  where ˆ
zξ  is the vertical displacement, ( )

1
2

0 2 vR Ak k R′≡ − Ω Ω0  

1 cH≡ , d dR′Ω = Ω , ( )03 2k k R′Ω = − Ω  and ( )
1

2v 4A zB πρ≡  is the Alfvén velocity.  In 

addition ( )0G z  is an even or odd function of z  that is localized over a distance 
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c z pH H< ∆ <
#

 represented, for instance, by ( )2 2

0 exp zG z= − ∆ .  The lowest order equation 

that gives 0γ  or 0δω  for this class of mode is obtained from Eq. (3 ) following the same steps 

given in Ref. [3], 

( ) ( )
22 2 4

22 2 0 2 0 2 0 2 0

0 0 0 0 02 2 2 4

0 0

7ˆ ˆ3 2 v v
3

k
k R A R T z A R R

z
k k C ik z i k

z H H z z
δ ξ ξ ξ γ δω ξ

Ê ÛÃ Ô Ω∂ ∂ ∂Í Í
Ω − + − −Ë ÜÄ Õ

∂ ∂ ∂Í ÍÅ ÖÌ Ý
# # 0 , (4) 

where 2 2 2v 3R R A kk kδ = − Ω  and  ( )0 0

0
ˆ

R zi z kξ ξ∂ ∂# 0  . Then Eq. (4) can be integrated and 

reduced to a quartic equation for 0

zξ#  that can be solved analytically.  As a significant example 

we note that when ( )( )4 5 3 2 1 0T TC η≡ − > , the growth rate corresponding to the lowest 

eigenfunction,  for which ( )
1

2
0 0z H k∆ 0 , is ( ) ( )( )( )

1
1 2

2
0 0v 6 3 35 2 3k A THγ ηÇ ×Ω −É Ú0 . 

When 0TC < , the higher eigenfunctions remain unstable [3] and 0γ  is given by a 

different expression while, the lowest eigenfunction, is purely oscillatory (i.e. 0 0δω ≠  and 

0 0γ = ). 

Tri-dimensional Spirals 

 Unstable non-axisymmetric modes with relatively low mφ ’s, can be represented 

typically by 

( ) ( ) ( ) ( ){ } ( )0

z 0 0 0 0 0 0
ˆ sin expz R kF R R G z k R R m R t tφξ ξ φ γ− − − Ω −Ç ×É Ú

#0   (5) 

where ( ) ( )2 2

0 0exp 7 6 RF R RÇ ×= − − ∆É Ú , 2 2

0Rk k0 , ( )2

0R Rm kφγ ′∆ ≡ − Ω  and sgn sgnRk mφ= . 

Clearly, these are tri-dimensional trailing spirals that are localized radially.  The excitation of 

the lowest harmonics of these structures ( )2,3mφ =  lends itself to the formulations of a 

theoretical model for high frequency QPO’s as proposed in Ref. [4]. 

 Purely oscillatory spirals that can be found for 0TC <  are instead represented by 

( ) ( ) ( ) ( )
20

0 0 0 0 0
ˆ sin sin

2
z z RG z t R R m t k R Rφ

σ
ξ ξ δω φ

Ç × Ç ×− − − Ω + −É ÚÈ ÙÉ Ú
#0  (6) 

where ( )07 3Rm kφσ δω′= Ω .  These spirals can be superposed to produce mode packets 

propagating away from 0R R=  for sgn sgnRk mφ=  (trailing spiral configuration) and lend 
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themselves as a means to transport angular momentum away from 0R R= .  The effective 

diffusion coefficient associated with the propagation of the relevant mode packets is 

0Deff δω σ= ∂ ∂  and is of significant magnitude.  We may argue that at the surface 0R R= , 

in the vicinity of a black hole where the higher eigenfunctions (in z) have their highest growth 

rates, these modes can sustain the excitation of the mode packets mentioned above.   Therefore 

0R R=  could be considered as the surface toward which the accreting matter would flow. 

Particle Outflows and Inflows 

The considered mode can produce particle density transport, in the vertical direction, that is 

of contrary sign to that of the temperature transport and modify the density and temperature profiles 

in such a way as to lead Tη  toward 2/3. Thus, if 2 / 3Tη >  a particle inflow toward the equatorial 

plane is induced.  This process is similar to that proposed for the theoretical explanation of the 

observed particle inflow in magnetically confined toroidal plasmas that is associated [5] with the 

outflow of thermal energy related to the ratio of the gradients of the radial electron temperature and 

the particle density.   

When 2 / 3Tη < , including the case where 0Tη =  or where the surface of the disk can be 

hotter than the interior, the particle transport is away, from the equatorial plane. These arguments are 

based on the quasilinear analysis that gives the vertical particle flux produced by unstable modes as 

2

0

4 3ˆˆv̂
5 2

pz z z

n
n n T

z T z
γ ξ

∂ ∂Ç ×
Γ = − × −È Ù∂ ∂É Ú

0  , 

where  indicates an average over a radial distance R∆  such that 01 Rk R R< ∆ < . The 

corresponding temperature flux is ˆˆ ˆ ˆv vz zT n T n−0 .  The outflows produced by these 

modes can be considered as candidates to explain the origins of the winds that have been observed 

to emanate from disk structures such as those at the core of AGN’s.  *Sponsored in part by the U.S. 

Department of Energy. 
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