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1. Introduction. An important direction of research in controlled fusion is development 
of methods for reconstruction of internal plasma parameters using external observations. Such 
methods allow obtaining valuable information about plasma characteristics, which cannot be 
measured straightly, understand plasma behavior and produce reliable control technique. 

 In this paper the problem of toroidal plasma current density reconstruction is considered. 
It is known that this problem is strongly ill-posed [1-3]. Nevertheless several methods are de-
veloped for its solution, for example, those implemented in codes EFIT [4] or SCoPE [2,3], 
and   successfully used for production of practical results.  

Typically, methods for current density reconstruction search for some solution of the in-
verse problem and do not address the question about its uniqueness. However, theoretical 
analysis of simplified inverse problems reveals possibility of multiple solutions. For correct 
interpretation of a plasma pulse it is very important to find all substantially different solutions, 
and then to use supplementary data to select the one appropriate to the real physical process. 

In this paper, an accurate formulation of the inverse problem for reconstruction of the pol-
oidal flux and components of the toroidal current density and variations of formulation are 
presented together with a novel method for determining all substantially different solutions. 
Examples of substantially different solutions in close to experimental conditions are given. 

2. Mathematical formulation of the problem. Let (R, ,Z)  be cylindrical coordinates 

with the Z -axis oriented along the tokamak axial symmetry axis; (R,Z)!  be the poloidal flux 

function, equal to the covariant component A  of the vector potential of the magnetic field 

B A" #$
   

; %  is known, e.g. from optic measurements [2], plasma boundary in the  meridian 

section of the tokamak; S  be the area bounded by % ; and I  be the toroidal plasma current. 

The following relations are present in the formulation of the problem of toroidal axially 
symmetric plasma equilibrium reconstruction 
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The Grad-Shafranov equation (1) is a two-dimensional elliptic equation with non-linear 

right-hand side. Here the notation of ref. [5] is used: j - toroidal current density; ( )p !  - the 

kinetic pressure; ( )F !  - the poloidal current function, related to the toroidal magnetic field 

tor /B F R" ; n
 

 - the external in respect to S  normal unit vector; 1  - the derivative in the di-

rection of vector n
 

, which is related to the poloidal magnetic field; 0&  - the vacuum magnetic 

permeability coefficient. The total toroidal current I is calculated through 1  with curvilinear 
integral using the Green formula. 

In a typical direct problem function !  is to be determined from known functions p and 

F using equations (1)-(3), (5). Below we consider the inverse problem which seeks to find the 

set ( , , )k k kp F!  of all substantially different solutions, which satisfy conditions (1)-(3), (5) ex-

actly and condition (4) at least approximately with some given inaccuracy 4 subject to a given 
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plasma boundary   and the function!  
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In this paper a fast and reliable algorithm for determining of the set of ( , , )k k kp F"  is pro-

posed. For extraction of the unique triplet from substantially different ones ( , , )k k kp F"  it is 

necessary to add to equations (1)-(6) other constraints appropriate to some additional data.  
Partial derivative (4) can be set either from the solution of the direct problem or from ex-

perimental data processing. In the last case at least two variants are possible. In the first one 

the derivative / n"$ $
 

 (4) is searched from the solution of the Grad-Shafranov equation out-

side plasma using measured at some points values of "  and B
 

. In the second one it is as-

sumed that one solution ( *, *, *)p F" , including * / n"$ $
 

, of an inverse problem, different 

from (1)-(5), is known, for example, from codes SCoPE or EFIT, which solve for the whole 

region inside the chamber, and substantially different from  ( *, *, *)p F"  solutions 

( , , )k k kp F"  are to be found. 

Values of / n"$ $
 

 can be found experimentally with some accuracy only. Therefore equa-

tion (4) is replaced with a more general condition (6). However equation (5) is preserved, 
since current I  is known from experiment with sufficiently high accuracy. 

An important element in the formulation of the problem is setting the class of functions p  

and F , from which a solution ( , , )p F"  is searched. It is desirable to narrow the class of func-

tions sought for as much as possible. We apply the approach normally used for solution of the 

direct problem (1)-(3). In the direct problem functions p  and F  are considered as input pa-

rameters and should be preset. The main interest in the direct problem is to find "  appropriate 

to the fixed ranges of ( )p "  and ( )F "  values. In this case it is necessary to consider functions 

( ( ))p ( "  and ( ( ))F ( " 1
, in which (  runs over all given values, e.g. the segment [0,1], for 

any bounded " , otherwise p  and F  may not get in the required range, since the values of "  

become known only after the solution of the direct problem (1)-(3). Assuming "  to be 

bounded and non-negative 0" )  the simplest form of  (  convenient for differentiation is 

(R,Z) S (R,Z) S

( , ) (max ) / max ,    [0,1]  in S.R Z( " " " (
* *

+ % *       (7) 

Thus usually in the direct problem (1)-(3) functions ( ( ))p ( "  and ( ( ))F ( "  are consid-

ered, because their range is known beforehand, since [0,1](* . Geometrical interpretation of 

transition from ( )p "  and ( )F "   to ( ( ))p ( "  and ( ( ))F ( "  is transition from setting p  and 

F  as function of "  level lines with unknown in advance numeration to the known in advance 

numeration of level lines of ( ) [0,1]( " * . Substitution (7) does not change the differential 

properties, but the considered class of functions p  and F  becomes somewhat narrower, in 

particular infinitely growing with growth of "  functions are discarded. 

Functions p  and F  in case of ( ( ))p ( "  and ( ( ))F ( "  become invariant in respect to  "  

normalization, i.e. for any constant 0C ,  we have ( ( )) ( ( ))p p C( " ( "+  and 

( ( )) ( ( ))F F C( " ( "+ . Therefore the free parameter - .
2

(R,Z) S (R,Z) Smax min/ " "
%

* *' %  appears 

in eq. (1) of the direct problem (1)-(3), which is usually chosen from the condition (5) of given 
total current I . 

                                                 
1 Here the new functions ( ( ))p ( "  and ( ( ))F ( "  are denoted with the same letters p  and F , already used 

for functions ( )p "  and ( )F " , since further it does not lead to collisions of notations. 
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In the inverse problem by analogy with the direct one we will search functions p  and F  

from the class ( ( ))p  !  and ( ( ))F  !  with [0,1] "  (7), and function !  from the class of 

bounded non-negative functions and use condition (5) for !  normalization. That is we con-

sider the problem (1)-(6) with additional constraint (7). At that transition to   in all equations 

(1)-(6)  for example in the boundary conditions, is not necessary, since introduction of   is 

required for defining the right hand side (2) of equation (1) only. 
At present the question about uniqueness of the solution of the inverse problem (1)-(5) is 

studied analytically in some particular cases only. The answer depends on the form of the 
area S and the form of the right-hand side (2) in eq. (1). It is shown that the problem (1)-(5) 

can have both one and several solutions. Areas S  and functions p , F and # , met in practice, 

require numerical solution of the problem (1)-(5). 
3. Numerical method for construction of substantially different solutions. We turn in 

(2), the right-hand side of eq. (1), to the normalized flux (7) and assume that functions /dp d  

and 2 /dF d can be presented as polynomials in   
2
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The method for determining all substantially different solutions is based on special enu-

merative technique for values of coefficients i%  and i&  in equation (8). The right-hand side  of 

eq. (1) with fixed coefficients i%  and i&  becomes known and the possibility of solving the di-

rect problem (1)-(3), (5) shows up. We search for the numerical solution by iterations over 

1,2,...s '  analogously to [6] 
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Here * is the difference operator, which approximates the left hand side of eq. (1) taking 
account of the boundary condition (3). The coefficient %  ensures validity of eq. (5) for 

( 1)s! ! (' . A modern effective method for solution of this discrete problem is presented in [2], 

for example. Iterations continue until a steady state or achievement of some maximum num-

ber. If the steady state solution exists, we denote it as ! - . Inequality (6) is checked for ! - . If 

it is valid then ! ! -'  is taken as the solution if eq. (6). While selecting solutions it is possi-

ble to check additional constraints, such as  0! . , or fit to some required pressure p range, 

etc. with the aim to narrow the set of different solutions ( , , )p F! . 

Thus finding all substantially different solutions of the problem (1)-(8) reduces to an accu-
rate overhaul of the values of coefficients in polynomials (8). This can be done by different 
methods. One is based on usage of the / -net of the finite number of polynomials [6], which 

cover a priori defined sufficiently broad class of functions ( ( ))p  !  and ( ( ))F  !  with given 

accuracy / . Solutions ( , , )k k kp F!  appropriate to the elements of the / -net give different so-

lutions of the inverse problem (1)-(8). Using one or other criteria one can select substantially 

different ones from ( , , )k k kp F! . 

4. An example of substantially different solutions. The solution of the direct problem 

(1)-(3), (5) with MAST-like plasma parameters was considered as the given one ( *, *, *)p F! . 

The ellipse with elongation 1.7, minor radius 0.5 m and centre at R '  0.7 m was taken for the 

area S . Total toroidal current was I  = 560 kA. Functions * /dp d  and 2( *) /d F d  were cal-

culated with code SCoPE [2,3,5] and presented with polynomials of the 2-d order for * /dp d  
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and 3-d order for 2( *) /d F d  with !1% accuracy. Derivative "  was calculated using *# . 

The inverse problem (1)-(8) was considered. We searched for its substantially different from 
( *, *, *)p F#  solutions in the sense of noticeable deviations in toroidal current density (2).  

The method, described briefly in the previous section, gave 198 solutions ( , , )k k kp F#  of 

the inverse problem (1)-(8), satisfying inequality (6) with accuracy $  < 2.5%. Figs. 1 and 2 

illustrate given solution and an obtained one. It is clear that not just quantitative in up to 40% 
but also qualitative difference in the current density is present. Along with hollow current den-
sity the inverse problem has a non-hollow solution. Each of these is appropriate to different 

physical understanding of the pulse. The fluxes #  in presented cases differ in less than 5%.  

It is important to note that a very similar result was obtained for the inverse problem with 

fixed plasma pressure *p p% . 

5. Conclusion. Formulation of the constraints, required for obtaining a unique solution of 
the  current density, is an unresolved theoretical objective. The possible existence of multiple 
substantially different solutions, as shown in this paper, indicates the importance of being able 
to demonstrate uniqueness or alternatively to identify other substantially different solutions. 
To avoid faulty interpretation of future experiments, caused by possible non-unique recon-
structions, it is advisable to supplement equilibrium reconstruction codes with a module for 
searching of all substantially different solutions. Some previous results may require reexami-
nation for studying the uniqueness of reconstructed current density. 

The results of this work confirm a known fundamental statement that finding one solution 
is not sufficient for some inverse problems, it is essential to explore existence of other substan-
tially different solutions, which also satisfy the conditions of the problem. The presented ap-
proach can be used for vindication of uniqueness of the solution or construction of other sub-
stantially different solutions for considered and other inverse problems of controlled fusion. 
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Fig. 1. Current density 

in plane Z=0: dashed - 

given, solid - found. 

Fig. 2. Components of j& : 

dashed - given, solid - found. 
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