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Introduction: Alfvén eigenmodes (AEs) are studied due to the potential redistribution of fast

ions that they can cause and also for the purpose of diagnosing plasma parameters [1]. Modes

driven by both the radial gradient of the fast ion pressure, e.g. Toroidal Alfvén Eigenmodes

(TAEs) [2], and by energy space gradients, e.g. Compressional Alfvén Eigenmodes (CAEs)

[3], have been previously studied on NSTX [4] and observed on MAST [5], driven by super

Alfvénic ions produced by neutral beam injection (NBI) [6, 7]. For instabilities with frequency

ω comparable to the ion cyclotron frequency Ωi, the relevant fast particle resonance responsible

for the mode excitation is the Doppler shifted cyclotron resonance [8],

ω − k‖v‖res − lΩb = 0 (1)

where k‖ = k ·B0/|B0|, l is an integer, l = +1 corresponds to the Doppler resonance, l = −1

corresponds to the anomalous Doppler resonance and v‖res is the parallel velocity of the reso-

nant beam particles. Note on MAST the NBI and thermal plasma ions are both deuterium so

that Ωb = ΩD. New MAST data [9], obtained using high power super Alfvénic NBI, shows

significant AE activity in the ion cyclotron frequency range with the intermediate frequency

modes having a large compressional component [10]. The aim of the present paper is to per-

form kinetic modelling of the linear drive and damping for global AEs. A 1-D model [11, 12]

for computing AEs is used with the NBI distribution function computed using the TRANSP

code [13]. The 1-D eigenmode model is simpler than the models from Refs. [14, 4], but allows

extensive parameter space scans of toroidal mode number and k‖.

Experimental data: MAST is a small aspect ratio spherical tokamak (ST) with major and

minor radii of R0 = 0.86m and a = 0.6m respectively. In a recent series of MAST discharges,

with co-Ip NBI with Emax
NBI ≈ 65keV and vmax

‖b
/vA ≈ 2.5, we observed persistent AEs which

span a frequency range between ΩD (R0)/4 and just above ΩD (R0) ≈ 2.3×107rads−1 ( fcD ≈
3.6MHz) (where ΩD (R0) is the cyclotron frequency at the geometric axis). Figures 1 - 3 show

a typical example of such data.
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Figure 1: Spectrogram of AEs from Mirnov

coils on MAST pulse 18696

Figure 2 shows toroidal mode numbers (n)

of the AEs, which are only negative and de-

crease in frequency as |n| increases (n < 0

implies counter Ip). The fine frequency split-

ting between successive mode numbers can be

explained by toroidal plasma rotation f max
rot ≈

19kHz, driven by NBI. However, this rotation

cannot explain large frequency separations e.g.

∆ fn=−5→−6 ≈ 150kHz. It is important to note

that AEs with a maximum frequency of 3.8MHz,

exceeding the cyclotron frequency fcD (R0) =

3.77MHz, were observed in pulse #18886 (not

shown).
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Figure 2: Toroidal mode number (n) analy-

sis. Here we see high negative mode num-

bers.
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Figure 3: Evolution of vacuum field, elec-

tron density, Dα signal, soft X-ray, plasma

current and NBI power.

Modelling the NBI distribution function: Using TRANSP [13] with 105 macro particles the

deuterium NBI distribution function at t = 0.32s has been calculated, which shows that most of

the NBI produced ions are deposited in the core. Figure 4 shows that a high density bump on tail

in NBI energy exists, due to the balance of charge exchange losses at lower energy and beam

sources at high energy, out to a normalised radius of r/a = 0.425, where n0 = 4× 1019m−3,

T = 950eV, nb = 5×1017m−3.
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Figure 4: Contours of fNBI in
(

v‖,v⊥
)

space.

A shifted Gaussian distribution in velocity space can

represent the NBI distribution function in the relevant

phase space region,

fb =
nbe

−(v‖−v‖b)
2
/∆v2

‖e−(v⊥−v⊥b)
2/∆v2

⊥

2π2v⊥b∆v⊥∆v‖
(2)

with following NBI parameters (which are fitted to the

TRANSP result) v⊥b = 6 × 106ms−1, v‖b = −1.47 ×
106ms−1, ∆v⊥ = 1 × 105ms−1 and ∆v‖ = 1.03 ×
105ms−1. We will assume v2

⊥b ≫ ∆v2
⊥ in all calcula-

tions that follow.

Global kinetic analysis: In order to calculate the

global linear kinetic drive, γgl, associated with the NBI

distribution function in Eq. (2) and Maxwellian thermal plasma species, we perform the follow-

ing weighted integral of the local kinetic drive and damping, γ loc, with the wave electric field

(E (r)) over the region of the eigenmode localisation [3]

γ
gl =

∫ a
0 rdrγ loc (r) |E (r)|2

∫ a
0 |E (r)|2

. (3)

where, for small k⊥, the NBI contribution to γ loc takes the following form

γ loc

ω
=

−√
πe−x2

∓
ω2

pb

ω

[

1
k‖∆v‖

− v‖b

∆v‖ω
+ x∓

(

− 1
ω

+ 3
2

∆v2
⊥

∆v2
‖
+

v2
⊥b

∆v2
‖

)]

sgn
(

k‖
)

2+
ω2

pD

(ω∓ΩD)2

, x∓ =
ω − k‖v‖b

∓ΩD

k‖∆v‖

(4)

We use a 1-D ‘hollow cylinder’ model [12] for calculating a discete spectrum of AEs in the

frequency range compatible with the experimental observations and use the Doppler resonance

condition from Eq. 1 to identify the resonant particle velocity for a given eigenmode. As a

result of the eigenmode analysis, we obtain E (r) and the global drive given by Eq 3. For the

NBI distribution function given by Eq. 2 the value of the drive is sensitive with respect to v‖b

and v⊥b. In order to assess this sensitivity we vary v‖b and v⊥b within the TRANSP error bars

(of about 10%) for a mode with n = −9, k‖ = 6.8m−1 and f ≈ 1MHz (Fig. 5).

The maximum growth rate calculated within the TRANSP error bars is between γgl/ω ≈
0.1% and 1% which is then consistent with experimentally measured linear growth rate of

γgl/ω = 0.5%.
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Figure 5: γgl/ω contours as a function of v‖b and

v⊥b. The red circle shows the 10% tolerance around

the TRANSP value of the modelled beam velocity.

Absence of n > 0 modes: The ob-

served n < 0 modes were driven via the

Doppler resonance, l = +1 in Eq. 1,

while the n > 0 modes can only be driven

via the anomalous Doppler resonance,

l = −1. Although the NBI on MAST

was super Alfvénic, it was still below the

critical beam speed required for exciting

the right hand polarised compressional

Alfvén eigenmodes (CAEs),

v‖b >
3
√

3

2
vA. (5)

The validity of Eq. 5 can be tested exper-

imentally by lowering the magnetic field.

Conclusions: It is now be understood that high frequency AEs on MAST are driven via the

Doppler shifted cyclotron resonance condition by a bump on tail free energy source associated

with the NBI ions. The absence of n > 0 AEs can now be understood to be a result of the exis-

tence of a critical beam velocity, which was not exceeded experimentally.
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