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A theoretical description of the interaction of radio frequency (RF) waves with electrons in

tokamaks requires an accounting of the toroidal magnetic field geometry. For EC waves, the

description has to be relativistic so that the damping of the waves and their interaction with

electrons are described correctly. In this paper we derive the quasilinear diffusion operator for

the interaction of RF waves with electrons using the Lie transform perturbation technique. We

use the magnetic flux coordinates of an axisymmetric toroidal plasma, and the electron motion is

expressed in terms of the canonical guiding center variables. The electron motion is perturbed by

RF waves and by non-axisymmetric perturbations to the confining magnetic field. The magnetic

perturbations could be due to magnetic islands in a plasma.

The quasilinear action diffusion equation describes transport in momentum space and in the

radial spatial direction induced by magnetic perturbations and RF waves. The diffusion ten-

sor is non-singular and time-dependent. As a result of applying the perturbation theory to fi-

nite time intervals we avoid the presence of the usual Dirac delta functions which results in a

non-vanishing diffusion tensor only on a discrete set of action surfaces which satisfy exactly a

resonant condition [1]. The appearance of Dirac’s delta function is a consequence of two facts.

The first is related to the consideration of infinite plane waves. For the case where a finite beam

size is taken into account, the dependence on the resonance condition becomes non-singular,

resulting to what is known as resonance broadening effect [2]. The second is related to dynami-

cal features of the electron motion. More specifically, singularities appear when the Markovian

assumption for decorelation of the particle orbits due to perturbations, is invoked [1]. However,

in many cases of interest such statistical assumptions do not hold. The underlying phase space

of the system contains not only chaotic areas but also islands of "regular", quasiperiodic motion.

In a general magnetic configuration, consisting of nested toroidal magnetic surfaces, the co-

variant representation of the magnetic field is [3]

B = g(ψp)∇ ζ + I(ψp)∇ θ +δ(ψp,θ)∇ ψp (1)

whereψp,ζ , and θ are, respectively, the poloidal flux, the toroidal angle, and the poloidal

angle. The functionsg andI are related to the poloidal and toroidal currents, respectively, andδ
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is related to the degree of non-orthogonality of the coordinate system. The magnetic field lines

arestraight lines in the(ζ ,θ) plane. The guiding center Hamiltonian [3] is

Hgc =
(

m2c4 +m2c2ρ2
‖B2 +2mc2µB

)1/2
+Φ (2)

whereρ‖ = v‖/B, v‖ is the component ofv alongB, m is the mass of the electron,µ is the

magnetic moment, andΦ is the electrostatic potential. The two sets of canonically conjugate

variables [3] are(Pθ ,θ) and(Pζ ,ζ ) where

Pθ = ψ +ρ‖I, Pζ = ρ‖g−ψp (3)

ψ, the toroidal flux, is given bydψ/dψp = q(ψp) with q(ψp) being the safety factor. Note that

ψp andρ‖ are functions ofPθ andPζ only. The third set of canonically conjugate variables is

(µ,ξ ), with ξ being the gyration angle. For an axisymmetric magnetic field the three-degree

of freedom system (2) has three independent conserved quantities(µ,Pζ ,W ) and the parti-

cle motion is completely integrable. The Hamiltonian describes magnetically trapped particles

moving in banana orbits, and passing particles circulating in the toroidal direction. An action-

angle transformation can be used to eliminateθ from the Hamiltonian. A new action̂Pθ where

P̂θ =
∮

Pθ(θ;µ,Pζ ,W )dθ along with the canonical transformation is obtained from the gener-

ating functionS(ξ ,ζ ,θ; µ̂ , P̂ζ , P̂θ) = ξ µ̂ + ζ P̂ζ +
∫ θ

0 Pθ(θ ′; µ̂, P̂ζ , P̂θ)dθ ′. The hatted variables

are the new action-angle variables, andµ̂ = µ andP̂ζ = Pζ . We will use the new action-angle

variables and drop, without leading to any confusion, the hat over this variable set.

The non-axisymmetric magnetic perturbations have the formÃ = aB with a(ψp,θ,ζ ) =

∑m1,m2
am1,m2(ψp)ei(m1θ+m2ζ ). Such perturbations modify the parallel canonical momentumρc =

ρ‖ +a [3]. The scalar and vector potentials corresponding to RF wave fields are represented in

an eikonal formΦr f (x, t) = Φ̃r f (x)eiΨ(x,t), Ar f (x, t) = Ãr f (x)eiΨ(x,t)Pr f whereΦ̃ andÃ are am-

plitudes of the scalar and vector potentials, respectively,Ψ is the phase, andPr f is the wave

polarization vector. The local wave vectork and the angular frequencyω of the wave fields are

given byk(x, t) = ∇Ψ( x, t), ω(x, t) = −∂Ψ(x,t)
∂ t .

To second order in the ordering parametersε (RF wave perturbations) andλ (∼ ε) (non-

axisymmetric magnetic perturbations)H = H0 + εH1 + ε2H2, whereH0 = mc2Γ0 +Φ and

H1 = −
1
Γ0

(

ρcBb̂+(2µB)1/2ĉ
)

·Ar f +Φr f −
λ
ε

m
Γ0

ρcB2a (4)

H2 =
1

2mc2Γ0

[

c2A2
r f −

1

Γ2
0

{(

ρcBb̂+(2µB)1/2ĉ
)

·Ar f

}2
]

+
λ 2

ε2

B2

2c2Γ2
0

(

1−
ρ2

c B2

c2Γ2
0

)

a2 +
λ
ε

aB
Γ0

b̂ ·Ar f (5)
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The unit vectorb̂ is along the axisymmetric magnetic field, ˆa and ĉ are perpendicular tôb

(â = b̂× ĉ) gyrating with the particle andΓ0 = (1+ρ2
c B2/c2 +2µB/mc2)1/2.

By applying the Lie transform perturbation theory [4], the first order Lie generatorw1, ob-

tained from the solution of the equation∂w1/∂ t + [w1,H0] = K1 −H1, by setingK1 = 0, as

w1 =−
∫ t

t0
H1(J,θ,s)ds whereJ =

(

Pθ ,Pζ ,µ
)

, θ = (θ,ζ ,ξ ). The integration is along the orbits

of the unperturbed, integrable, HamiltonianH0, J(s) = const. andθ(s) = θ(t)+ωθ(s− t) with

ωθ = ∂H0/∂J. The resultingw1 is given by

w1 = ∑
n1,n2,l

Gn1,n2,l(J)eiNn1,n2,l ·(θ−ωθ t) ei(Nn1,n2,l ·ωθ−ω)t − ei(Nn1,n2,l ·ωθ−ω)t0

i(Nn1,n2,l ·ωθ −ω)

+ ∑
n1,m1,m2

Fn1(J)am1,m2(J)eiMn1,m1,m2·(θ−ωθ t) eiMn1,m1,m2·ωθ t − eiMn1,m1,m2·ωθ t0

i(Mn1,m1,m2 ·ωθ)
(6)

whereNn1,n2,l = (n1 + kθ ,n2 + kζ , l) andMn1,m1,m2 = (n1 + m1,m2,0). The first sum includes

resonance between the RF waves and the particles and depends on the three angles. The sec-

ond sum includes resonance between the magnetic perturbations and the particles and depends

on the two anglesθ andζ . This form is derived by representing the terms of the first order

HamiltonianH1 (4) in Fourier series as

∑
n1,n2

Gn1,n2(J)ei(n1θ+n2ζ ) =

[

(1/Γ0)Ãr f (X)
(

ρcBPr f‖Jl +(2µB)1/2
(

P+
r f Jl−1 +P−

r f Jl+1

))

− Φ̃r f (X)
]

eikψpψp, (7)

∑
n1

Fn1(J)ein1θ =
m
Γ0

ρcB2 (8)

where the polarization vector has been analyzed to one parallel (Pr f‖) and two counter-rotating

circular polarizations (P+
r f ,P

−
r f ) andJl = Jl(k⊥ρ) is thel−th order Bessel function. Both sums

in eq. (6) include a functional dependence on the actions of the form

R(Ω; t, t0) =
eiΩt − eiΩt0

iΩ
=

∫ t

t0
eiΩsds (9)

This function is smooth and localized aroundΩ = 0 and indicates a resonance between the

particle motion and the perturbations. For long times limt→∞,R(Ω; t,−t) = 2πδ(Ω), where

δ(Ω) is the Dirac delta function commonly appearing in quasilinear theory [1].

The evolution of any functionf (z) of the phase space variables over an infinitesimal time in-

terval[t0, t0+∆t] is f (z(t0 +∆t; t0), t0 +∆t) = T (z0, t0)SK(t0+∆t; t0)T−1(z0, t0) f (z0, t0), where

T = e−L, L f = [w, f ]. As a result of applying the canonical perturbation theory in finite time

intervals[t0, t], one can easily show thatwn(z0, t0) = 0 . Thus,T (z0, t0) = I. Furthermore, we

have chosenKn = 0 for n = 1,2. Then the time evolution ofSK is given by theH0, i.e., by
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integrating along unperturbed orbitsSK = SK0 = SH0. Upon taking the limit∆t → 0 we obtain

∂ f (z,t)/∂ t = ∂
[

T−1− I
]

(z,t)/∂ t f (z,t). For the case wheref (z) is the distribution function

this equation is an approximation, up to the same order asT−1, to the original Vlasov (Liou-

ville) equation. For a functionF(J) which is an average off over the angles,F(J) = 〈 f (θ,J)〉θ

we have
∂F(J, t)

∂ t
=

∂
〈

[T−1− I](z,t)
〉

θ
∂ t

F(J, t). (10)

Up to second order inε we haveT−1− I = L1 + (1/2)L2 + (1/2)L2
1 with LnF = [wn,F ] [4].

Upon integration by parts and using the fact that the dependence on all the angles is periodic,

we find that< LnF(J) >θ= 0 for n = 1,2 and< L2
1F(J) >θ= ∇ J · [< (∇ θw1)

2 >θ ·∇ JF(J)]. An

important point emerges from these equations.The angle-averaged operators that are needed in

the evolution equation (10) can be calculated up to second order in the perturbation parameter

using results from first order perturbation theory, namelyw1 [5]. The evolution equation (10)

then becomes

∂F(J, t)
∂ t

= ∇ J · [D(J, t) · ∇ JF(J, t)] , where D(J, t) =
1
2

∂
〈

(∇ θw1)
2
〉

θ
∂ t

(11)

is the generalized quasilinear tensor. It can be shown that the first order momentum variation

can be written as< (∆J)2 >θ=< (∇ θw1)
2 >θ , from which we can see thatD(J, t) = lim∆t→0 <

(∆J)2 >θ /2∆t corresponding to the common definition of the quasilinear diffusion tensor. The

evolution equation (11), can be transformed to the physical variablesP= (ψp,v‖,v⊥) describing

particle transport, heating, and current drive through the variation of the distribution function

with respect to(ψp,θ,ζ ), v⊥, andv‖, respectively.
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