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A theoretical description of the interaction of radio frequency (RF) waves with electrons in
tokamaks requires an accounting of the toroidal magnetic field geometry. For EC waves, the
description has to be relativistic so that the damping of the waves and their interaction with
electrons are described correctly. In this paper we derive the quasilinear diffusion operator for
the interaction of RF waves with electrons using the Lie transform perturbation technique. We
use the magnetic flux coordinates of an axisymmetric toroidal plasma, and the electron motion is
expressed in terms of the canonical guiding center variables. The electron motion is perturbed by
RF waves and by non-axisymmetric perturbations to the confining magnetic field. The magnetic
perturbations could be due to magnetic islands in a plasma.

The quasilinear action diffusion equation describes transport in momentum space and in the
radial spatial direction induced by magnetic perturbations and RF waves. The diffusion ten-
sor is non-singular and time-dependent. As a result of applying the perturbation theory to fi-
nite time intervals we avoid the presence of the usual Dirac delta functions which results in a
non-vanishing diffusion tensor only on a discrete set of action surfaces which satisfy exactly a
resonant condition [1]. The appearance of Dirac’s delta function is a consequence of two facts.
The first is related to the consideration of infinite plane waves. For the case where a finite beam
size is taken into account, the dependence on the resonance condition becomes non-singular,
resulting to what is known as resonance broadening effect [2]. The second is related to dynami-
cal features of the electron motion. More specifically, singularities appear when the Markovian
assumption for decorelation of the particle orbits due to perturbations, is invoked [1]. However,
in many cases of interest such statistical assumptions do not hold. The underlying phase space
of the system contains not only chaotic areas but also islands of "regular”, quasiperiodic motion.

In a general magnetic configuration, consisting of nested toroidal magnetic surfaces, the co-
variant representation of the magnetic field is [3]

B =9g(yp)U{ +1(p)10 + 6(Wp, 6) Uy 1)

where y)p,{, and 6 are, respectively, the poloidal flux, the toroidal angle, and the poloidal

angle. The functiong andl are related to the poloidal and toroidal currents, respectivelypand



35th EPS 2008; Y.Kominis et al. : Quasilinear Theory for Momentum and Spatial Diffusion due to Radio Frequen... 20f4

Is related to the degree of non-orthogonality of the coordinate system. The magnetic field lines

arestraight lines in théZ, 0) plane. The guiding center Hamiltonian [3] is
1/2
Hge = <mzc4+ mzcszsznLchzuB> o )

wherep = VH/B, v is the component o¥ alongB, mis the mass of the electrop, is the
magnetic moment, and is the electrostatic potential. The two sets of canonically conjugate
variables [3] ar¢Py, 6) and(P;,{) where

Po=y+pl, Pr=019— Wp (3)

Y, the toroidal flux, is given byl /dyp = q(yp) with g(¢p) being the safety factor. Note that
Yp andp are functions oPy andP; only. The third set of canonically conjugate variables is
(1, &), with & being the gyration angle. For an axisymmetric magnetic field the three-degree
of freedom system (2) has three independent conserved quair(tities, W) and the parti-
cle motion is completely integrable. The Hamiltonian describes magnetically trapped particles
moving in banana orbits, and passing patrticles circulating in the toroidal direction. An action-
angle transformation can be used to elimin@tieom the Hamiltonian. A new actioRy where
Py = $ Py(6; u,P;,W)d6 along with the canonical transformation is obtained from the gener-
ating functionS(&,,8; 1, P;,Pe) = E[L + {P; + & Pa(8'; 1, P;,Pg)dE’. The hatted variables
are the new action-angle variables, gne- u and I55 = P;. We will use the new action-angle
variables and drop, without leading to any confusion, the hat over this variable set.

The non-axisymmetric magnetic perturbations have the fArm aB with a(Yp,0,0) =
S my.my 8my.m, (Wp)€MO+M4) Such perturbations modify the parallel canonical momerggis
p| +a[3]. The scalar and vector potentials corresponding to RF wave fields are represented in
an eikonal form®, ¢ (x,t) = @ (x)d¥Y*0 A (x,t) = At (x)€¥Y*VUP, ¢ whered andA are am-
plitudes of the scalar and vector potentials, respectilis the phase, anB, s is the wave
polarization vector. The local wave vectoand the angular frequeney of the wave fields are
given byk(x,t) = @( x,t), w(x,t) = —%.

To second order in the ordering parameter@RF wave perturbations) amtl(~ €) (non-
axisymmetric magnetic perturbatiorts)= Hg + £Hy + £2Hy, whereHg = mc?l g+ @ and

Hy — —i <pCBb+(2uB)1/2> At + O —i—pCB2 (4)
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The unit vector is along the axisymmetric magnetic field,anhdc are perpendicular tb
(4= b x &) gyrating with the particle anBlg = (1+ p2B?/c2 + 2uB/mc?)1/2,

By applying the Lie transform perturbation theory [4], the first order Lie generatpob-
tained from the solution of the equati@w; /dt + [w1,Hg] = K1 — H1, by setingK; = 0, as
Wy = — j;g H1(J,0,s)dswhered = (Py,P;, 1), 6 = (6,,&). The integration is along the orbits
of the unperturbed, integrable, Hamiltonidp, J(s) = const. and(s) = O(t) + wg(s—t) with
wg = dHp/dJ. The resultingv, is given by

. an,n2‘|'w97w)t _ ei(an,nzj'o‘)Q*w)tO

el
W1 = G ((J eIan,an-(wa@t) :
nl%Z»l e V) '(an,nz,l - g — W)

) eiM ng,my,myWel el My mq,m, - Wato

+ Fry (3)@m, my (J) €M n1.my.mp-(6— et :
n17m21,mz nl( ) 17mz( ) I(MnlymLmZ.wg)

(6)
whereNp, n, | = (N1 +Kg, N2+ Kz, 1) andMp, my m, = (N1 + Mg, mp, 0). The first sum includes
resonance between the RF waves and the particles and depends on the three angles. The sec-
ond sum includes resonance between the magnetic perturbations and the particles and depends
on the two angle® and . This form is derived by representing the terms of the first order

HamiltonianH; (4) in Fourier series as

Z Gn1,n2(3>ei(n19+n25) =
(L/T0)A 1 (X) (6BR 111+ (2uB)M? (Ridoa+ Rryda ) ) — Bre(X) | e, (7)

jnie _ M 02
nZanl(J>é“1 = PB 8)

where the polarization vector has been analyzed to one paglg) and two counter-rotating
circular polarizationsR%,P;) andJ, = J (k,p) is thel —th order Bessel function. Both sums
in eq. (6) include a functional dependence on the actions of the form

R(Qit,to) = % — toteiQSds ©)
This function is smooth and localized aroufd= 0 and indicates a resonance between the
particle motion and the perturbations. For long times.lim Z(Q;t,—t) = 2mdQ), where
0(Q) is the Dirac delta function commonly appearing in quasilinear theory [1].

The evolution of any functiorf (z) of the phase space variables over an infinitesimal time in-
tervaltg, to+At] is f (z(to + At;to), to + At) = T(zo,t0) S« (to + At; t0) T (20, t0) f (20, t0), where
T =et Lf = |w, f]. As a result of applying the canonical perturbation theory in finite time
intervals|to,t], one can easily show that,(zp,tg) = 0 . Thus,T(zo,tg) = |. Furthermore, we

have choserk, = 0 for n = 1,2. Then the time evolution o¥ is given by theHo, i.e., by
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integrating along unperturbed orblfg = S¢, = S4,. Upon taking the limitAt — O we obtain
df(z,t)/0t =0 [T1—1](z,t)/dtf(zt). For the case wheré(z) is the distribution function
this equation is an approximation, up to the same ordd@rds to the original Vlasov (Liou-
ville) equation. For a functiof (J) which is an average df over the angless (J) = (f(0,J)),

we have 5 <[ Sy )>
OF(J,t)  I([T"—1](z,1)),
= o F(J,t). (10)
Up to second order i we haveT 1 —1 = Lj + (1/2)Lz + (1/2)L2 with LyF = [wh,F] [4].

Upon integration by parts and using the fact that the dependence on all the angles is periodic,
we find that< LnF (J) >g=0forn= 1,2 and< L2F (J) >= 0;-[< (Ogw1)? >¢ -03F (J)]. An
important point emerges from these equations.The angle-averaged operators that are needed in
the evolution equation (10) can be calculated up to second order in the perturbation parameter
using results from first order perturbation theory, namejy[5]. The evolution equation (10)

then becomes

) <(D9w1)2>

JOF(J,t) 0
ot (112)

ot

=3+ [DI,t) - LR (3,1)], where D(J,t) :%

is the generalized quasilinear tensor. It can be shown that the first order momentum variation
can be written as (AJ)? >g=< (gwWy)? >g, from which we can see thax(J,t) = lima_o <

(AJ)? >¢ /214 corresponding to the common definition of the quasilinear diffusion tensor. The
evolution equation (11), can be transformed to the physical vari@te@)y,v|, v, ) describing
particle transport, heating, and current drive through the variation of the distribution function

with respect tq(p, 8,¢), v., andv, respectively.

References
[1] A.N. Kaufman, Phys. Fluid45, 1063 (1972)

[2] L. Demeio and F. Engelmann, Plasma Phys. Contr. Fua8ri851 (1986)
[3] R.B. White, Phys. Fluidg, 845 (1990)
[4] J.R. Cary, Phys. Ref@9, 129 (1981)

[5] Y. Kominis, Phys. Rev. E 77, 016404 (2008)



