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1. INTRODUCTION

This report is devoted to the kinetic description of the transport phenomena occurring in
a magnetically confined toroidal fusion plasma by employing both the multiple timescale
approach [1] and the Lagrangian formulation of kinetic theory [2]. A three-component
strongly magnetized and weakly collisional plasma including the energetic ions is considered,
where the parameter range of a typical fusion plasma is assumed. The drift kinetic equation
applicable for the case of ions with poloidal gyro radii in the order of the plasma
inhomogeneity scale length is obtained. The theory developed consistently takes into account
the collisional transport effects, which may be responsible for the loss of energetic ions and
should be important for the formation of the phase space distribution of confined ions in the
MeV energy range. The Fokker-Planck operator is represented in a form easily accessible to a
numerical treatment.

2. BASIC EQUATIONS

Energetic ions, i.e., ions with energies far above the thermal one, play a prominent
role in the heating of fusion plasmas. In present-day tokamaks, minority ions accelerated by
ion-cyclotron-resonance heating (ICRH) frequently reach energies in the MeV range, and
deliver tens of megawatts of heating power to the bulk plasma. In a future reactor, most of the
heating will be provided by fusion-generated alpha particles. The description of collisional
transport processes of fast particles in toroidal plasmas is a rather difficult problem, as for a
complete description of the collisional behaviour of fast particles, one should take into
account the effects of slowing down, diffusive collisional transport induced by pitch-angle
scattering and parallel diffusion in velocity space. However, as the oscillation times of high-
energy ions in toroidal magnetic configurations are small as compared to characteristic
collisional ones, one can use the gyro (and bounce) averaging that significantly simplifies the
problem.

In general, the kinetic equation describing the distribution function for the particles of
a given species can be written in the form

of  _iof _

6t+X6xi C(f)+S, (1)
where X' are arbitrary phase-space coordinates, C(f) is the collisional operator and Sa fast ion
source. The conventional theory is essentially Eulerian in nature, working with f=f(r,V),
where the independent variables r,V are not constants of the orbital motion in the equilibrium
field. In contrast to the Eulerian description, many of the concepts in neoclassical theory
involve orbital properties and are essentially Lagrangian in nature [2]. Here we present a
transport theory for the low-collisionality banana regime using what amounts to the
Lagrangian picture.

In a strongly magnetized plasma the particle Larmor radius is much smaller than the
gradient length scales describing the fluid behaviour of the plasma. Considering the motion in
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a strong, but very slowly varying magnetic field B(r,t), one can define for each point in space
a set of three orthogonal unit vectors (t,,T,,T;) such that

T, =B/B; [7172] = T3 [172173] =T [7371] =T, (2)
If one expresses the particle position vector by the guiding center position and the Larmor
radius vector [3]

r.=R+p, 3)

then the Larmor rotation can be represented in the form
p = p(r,snd-1,cosb), (4)
V =V, 1, +V,(r, cosf +1,sinb), (5)

where p is the particle gyro radius p =V, Q™, 8 the gyro phase, andV the particle velocity;
V, and V; are the longitudinal and transverse components of V . Next, the gyrophase average

of any function g is defined by

-1 =99
(9)=-qod6, 6="r=2. (6)

As velocity variables one can use V={V,¢, 8} withé =V, /\/ , and as spatial Eulerian

variables one can introduce the flux coordinates {®,x,@}, where ® is the toroidal flux, Y and
@ the poloidal and toroidal angles, respectively, so that the magnetic field can be represented
in the form
B=0O0xOy—/OdxO¢=FO¢—-/O0Px1g, (7)

/(®P) being the rotational transform and F(®) the poloidal current outside the given flux
surface. Using X(r) = x'(R+p) OX(R) +p[IX, new radial variables R' might be introduced as
follows:

R=r'-pr', R*=r’-pr? R =r®-pors 8)
To simplify consideration it should be convenient to choose T, = ®/ |DCD| . Then

. 1] . . . . R . .
v, (0r =g_’ x, Or) = 1 (glngJ — g2gl —igtg® +1g™ 11)’ gl =0r mr! (9)

The collision term in Eq.(1) is a differential operator of the form
c(f)=0,(d+B0, )f (10)
where d is the vector of the “dynamic friction force” and D the diffusion tensor, both
defined in the velocity space by
d=vV, D=v Vi+({y,-v,)VOV. (11)
In Eq.(11), Vg,V and v, are the characteristic collision frequencies of slowing down,

transverse and parallel diffusion and I is the unit dyad.
If we choose for the diffusion coefficients the contravariant representation in the
Eulerian variables x =(r, V) defined by
d =dmx, D! =0x mx, (12a)
then we simply obtain
di=vyV, d’=0, d’=0
) 12b
D =yV2, DZ=y [l-&2) D¥=D¥= Vot 152 . DI =0, i#]. (120)
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In the derivation of the gyrokinetic equation, within conventional theory one first
performs for the LHS of Eq.(1) an ordering of all terms in the gyro radius and then averages
over the gyro phase. In evaluating the RHS one assumes that there is no change across the
Larmor radius p and calculates all the quantities in Eq.(10) at the guiding center position R.
However, a more consistent way is to make a transformation from the Eulerian variables
x=(r,V) to the Lagrangian ones Z =(R,V), taking into account the corrections arising from the
Larmor gyration and than to carry out the gyrophase averaging both the LHS of the Fokker-
Planck equation and of the transformed collision operator. This approach should be
essentially important for the description of the behaviour of NBI ions in spherical tokamaks
and present-day stellarator devices, where the ions can have poloidal gyro radii in the order of
the plasma inhomogeneity length scale. The inclusion of these additional contributions to the
transport coefficients may also be important for the description of the transport phenomena at
the plasma edge. The diffusion coefficients in the z-space are then given in the form

d_djaz’ D;j:D“aZ azl, (13)
ox! OX< ax
with the Jacobian
4 5 6
:a(z):a(V,R):a(z,z,z)zl’ (14)

o(x) a(V,r) a(®,x.9)
where in the evaluation of D the Larmor oscillations are neglected. For the representation of
the magnetic field in the form of Eq.(7) one arrives at

Jo, =g, =V?/Fg® . (15)

After the transformation from the variables x to z the kinetic equation (1) can be written as
ﬂ+Rif+vif_C(f)+s (16)
ot OR ov

where the collision term in the Lagrangian coordinates z —{V; R} :{V',H; R}, A :{V,E} ,

can be represented as a sum of the conventional collision operator and the additional

contributions arising from the inclusion of finite Larmor radius effects

C(f)=C, (f)+C.(f), with (17)
1 a : v 0 0 0
fy=——— d +DYV' — |f + — D”—Jf, 18
CV( ) \/_avy\/g_z( z z aV'] ae( z ag ( a)
R 0 0 0
C.(f DYR—|f +—| DR —|f +
()= \/_av\/g_( : aR) ae( : aRj
(18b)
+ v (dR_i_DRV'i_l_ DRHi_l_ DRRi)f
\/_GR tT oV a8t aR)

Recalling the gyrophase average of Eq.(6) we can define both, the distribution function and
the diffusion coefficients by

g(V;R)=g(V',6:R) =(g(VR))+3(V',6:R). (19)
Since the characteristic frequencies satisfy the following hierarchy of inequalities

Q>> Vg >>V,,Vy (20)

the multiple timescale approach [1,2] may be applied. In order to find f = ?({ f >), one can

start from the Fokker-Planck equation (16) and collect all terms of the same order in p.
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Following the approach of [4-6], we will keep only the lowest order contribution arising from
the inclusion of the Larmor radii that results in

= 0 0 =
RE-(f)+Q_f= 21
6R< )* a6 O D

where both terms are of order unity. The part of the distribution function connected with fast
Larmor gyration may be easily found in the form

F=- R (t)=-pr
f= deQDaE<f> pE—la—R<f>, (22)

being in the agreement with the classical results of Hinton & Hazeltine [4]. After the
gyrophase averaging, we have reduced Eq.(16) to the drift-kinetic equation:

o(f 0 )
v, 1) 1) =(6 D) a9 @

where V. = <R> =V, +V; is the guiding center velocity and V,, is the drift velocity. The

collision operators can then be represented in the form

)= (e eor 2 e a0z 2 fn=cn) e
. 1 B (S LS

It should be pointed out that the result of Eq.(25) is due to the fact that the slowing down rate
v, for fast particlessignificantly exceeds the pitch angle and parallel diffusion rates v, and

v,,. Thus, the consistent approach in the derivation of the drift kinetic equation has resulted in
additional contributions to the transport coefficients.

3. CONCLUSIONS

The drift kinetic equation applicable for the case of ions with poloidal gyroradii of the
order of the plasma inhomogeneity scale length is obtained, where additional contributions to
the transport coefficients are found. The present investigations may be important for the
description of the behaviour of NBI ions in spherical tokamaks and present-day stellarator
devices and the charged fusion products in future tokamak and stellarator reactors, as well as
for the transport phenomena at the plasma edge.
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