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Incompressible pressure determinations
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Abstract Certain unresolved ambiguities surround pressure determinations for incom-
pressible flows, both Navier-Stokes and magnetohydrodynamic (MHD). For uniform-
density fluids with standard Newtonian viscous terms, taking the divergence of the
equation of motion leaves a Poisson equation for the pressure to be solved. But Poisson
equations require boundary conditions. For the case of rectangular periodic boundary
conditions, pressures determined in this way are unambiguous. But in the presence
of “no-slip” rigid walls, the equation of motion can be used to infer both Dirichlet
and Neumann boundary conditions on the pressure P, and thus amounts to an over-
determination. This has occasionally been recognized as a problem, and numerical
treatments of wall-bounded shear flows usually have built in some relatively ad hoc
dynamical recipe for dealing with it, often one which appears to “work” satisfactorily.
Here we consider a class of solenoidal velocity fields which vanish at no-slip walls, have
all spatial derivatives, but are simple enough that explicit analytical solutions for P
can be given. Satisfying the two boundary conditions separately gives two pressures, a
“Neumann pressure” and a “Dirichlet pressure” which differ non-trivially at the initial
instant, even before any dynamics are implemented. We compare the two pressures,
and find that in particular, they lead to different volume forces near the walls. This
suggests a reconsideration of no-slip boundary conditions, in which the vanishing of
the tangential velocity at a no-slip wall is replaced by a local wall-friction term in the

equation of motion.

In fluid mechanics, meaningful confrontation between experiment and theory begins
when theory starts to take fluid boundary conditions and their implementation seriously.
Generally speaking, fluids do what they do because of what is done to them at their
boundaries. One may ask if this truism does not apply also to plasmas. It may be taken
as indicating the incomplete maturity of fusion theory that the majority of theoretical
plasma calculations have given little or no attention to implementation of boundary
conditions, however unrealistic.

In recent years [1-3], we have addressed several MHD confinement problems
theoretically with an emphasis on satisfying toroidal boundary conditions (however
oversimplified) at material walls and including a full range of transport coefficients
in the dynamics, sometimes with disquieting results. For example, flows of a kind that
do not characterize straight-cylinder models of MHD seem to be necessary for force

balance, even in equilibrium.
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Here, we focus on one small aspect of this problem, determination of pressure
in incompressible fluids and MHD systems in which there are flows present.
Incompressibility, if not always an accurate representation of laboratory situations,
greatly simplifies dynamical fluid and MHD calculations because it makes an equation
of state and a dynamical equation for the internal energy or temperature unnecessary.
However, it raises certain difficulties associated with pressure determinations that do
not have a ready answer.

The equation of mechanical motion for MHD in the simplest version reads:

av jxB
Zy Vv =
ot TVoVY c

where v = v(x,1) is the fluid velocity vector, B is the magnetic field, P is the pressure

— VP + vV, (1)

normalized to the mass density, assumed uniform and constant. The current density
Jj = ¢V xB/4xr, where ¢ is the speed of light (Gaussian units), and v is the kinematic
viscosity, also assumed uniform and constant. (1) is to be supplemented, of course, by
Faraday’s law, Ohm’s law (assuming a finite scalar conductivity), and the statements
that both B and v are solenoidal (V-v = 0,V -B = 0). V-v = 0 functions in
effect as an equation of state; when we take the divergence of (1), it implies that
V2P = -V (v-Vv—jxB/c), which is a Poisson equation for P, a solution of which will
determine P as a (non-local) functional of v, j, and B. The Navier-Stokes fluid case is
specializable from the MHD description by going through and setting all terms in B and
J equal to zero. The difficulty we will illustrate is most simply exhibited by considering
the Navier-Stokes case first. Consider the case of “no-slip” rigid material walls, where it
is demanded that v should go to zero, conventionally. If we approach the walls with (1),
the two terms on the left should go to zero, leaving as a boundary condition on P the
relation VP = vV*v +jxB/c. However, a moment’s reflection shows that this amounts
to an overdetermination of the pressure P. Solutions to Poisson’s equation are well
known to be determined uniquely by giving either the normal component of VP at the
boundary or by giving P itself there, but giving both amounts to an overdetermination,
and cannot be done. These are called “Neumann” and “Dirichlet” boundary conditions,
respectively. Clearly, specifying the two tangential components of the gradient of P
amounts to giving Dirichlet conditions as well as the Neumann conditions specified by
the normal component.

Perusal of the fluids/MHD literature reveals only two cases where the Poisson
equation for P seems to have been straightforwardly useful at determining P: one-
dimensional steady shear flows, such as pipe flow or Couette flow, and rectangular
periodic boundary conditions such as are used in the theory of homogeneous turbulence.
Elsewhere, there are a variety of relatively ad hoc and only partially justified recipes for
demanding that a non-zero tangential velocity at a no-slip wall shall become small
as a function of time as a consequence of an ad hoc procedure concocted for the
purpose (e.g. [4], [5]). Molecular dynamics studies of the near-wall region in molecular
gases have revealed a more complicated situation than will comfortably fit into a

macroscopic hydrodynamics or magnetohydrodynamics [6]. However, many numericists
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Figure 1. Streamlines (dot-dash line) using ¢ from (2) with k = =/2,
A =2.642 Agy = .349 and Cx\ = 5000.

Normalized mean square pressure gradient difference r (solid countour),
with Re = 2290. Note that the fractional difference between the two
values of VP is significant only near the wall.

have designed and run incompressible, wall-bounded, shear-flow dynamical numerical
codes whose results do not seem to be at noticeable variance with experimental results,
even though they inevitably contain mathematically unsupported steps somewhere in
their core when it comes to enforcing no-slip boundary conditions. We illustrate the
difficulty by considering a class of two dimensional velocity fields derived from the stream

function,
Y(x,y) = Cp cos (kx)[cos (Ay) + Ay cosh (ky)] (2)

where v = Vibxe,, and the constants A and Ay, are determined numerically, so that
both components of v vanish at y = 4a to any desired accuracy. We illustrate, in
figure 1, a streamline plot (dot-dash lines) given by choosing k& = 7/2, A = 2.642
and Axy = .349, in units of ¢ = 1. This is an example drawn from a much larger
class of functions related to Chandrasekhar-Reid functions [7]. The flow is periodic in
the x-direction, has all spatial derivatives, is solenoidal, and perfectly satisfies no-slip
boundary conditions at the walls at y = +a. We may ignore any MHD complications
or decorations in the interest of making our point, and focus on the pure Navier-Stokes
case, substituting only v obtained from (2) into the “source” term on the right hand
side of the Poisson equation, in order to see what pressure P it will demand.

The source term contains only terms which are products and sums of exponentials
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of kz, Ay, and ky, so that despite some tedious algebra, it is elementary to generate an
inhomogeneous solution for P. To this may be added any solution of Laplace’s equation
with the same x periodicity. The combination may be chosen to satisfy either the
Neumann condition on P, or the Dirichlet condition, but not both. We thus generate at
t = 0, before any dynamics are advanced, two initial pressures, a “Neumann pressure”
Py and a “Dirichlet pressure” Pp, which are not identical and may be compared. In
figure 1, a fractional measure of the difference between Py and Pp is exhibited as a
contour plot of the scalar ratio r = (VPp — VPN)2/<(VPN)2>. It initially increases
with Re(= ((v?)/(k* + A\?))Y/?/v), approaching a maximum of about 2% near the wall
for Re = 10.

This unsatisfactory nature of the incompatibility between incompressibility-
determined pressures and no-slip boundary conditions may suggest, even at this late
date, the desirability of a modification of the latter. One recipe implemented in a
rotating MHD computation some years ago [8, 9] involved a replacement of the no-slip
requirement by an addition to the right hand side of (1) of a wall-friction term —v/7(x),
where 1/7(x) is a function of position which vanishes in the interior but rises to large
values in the immediate vicinity of the wall, in a region smaller in dimension than that
of any boundary layer one might hope to resolve. This permits the wall to absorb
momentum from the fluid and forces the tangential velocity to a low value, but does not
force it exactly to zero: a finite “slip” velocity remains. This recipe seemed to perform
adequately in the situation in which it was used, and may merit further more stringent
tests in the future in both MHD and Navier-Stokes cases. These are planned.

A more detailed presentation of this work will be published later [10]. (One of us
(D.C.M.) was supported by hospitality at the Eindhoven University of Technology in
the Netherlands).
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